

Simulation as an education tool

Tennó DAIKI

Department of Media and Education Informatics, Eötvös Loránd University

Budapest, H-1117, Hungary

and

Péter SZLÁVI

Department of Media and Education Informatics, Eötvös Loránd University

Budapest, H-1117, Hungary

and

László ZSAKÓ

Department of Media and Education Informatics, Eötvös Loránd University

Budapest, H-1117, Hungary

ABSTRACT

Western-style scientific methods put a lot of emphasis on the

comprehension and theoretical explanation of phenomena, that

is, on the accurate modelling of factors that govern system

operations. There are a great number of phenomena which are

difficult even for well-equipped specialists to observe directly.

Our paper, on the one hand, will present the role of informatics

in these fields; on the other hand, we will offer a possible

methodological structure that can be used both in the classes of

informatics (programming) and in the education of the specific

field.

In our view, developing programs for the purposes of

simulation is an excellent task in the education of

programming, because, for one, it is motivating for the students

and, for two, it is possible to introduce each linguistic tool to

the extent that the students can not only create but also use the

program. In our paper we will demonstrate how a few-line-long

program can be used to model phenomena taking place inside a

container of gas particles and how specific effects like

acceleration or force field can be considered.

Keywords: Simulation, Modelling, Physics, Biology,

Chemistry, Programming, objects, Firemonkey.

1. INTRODUCTION

First of all, we would like to point to the essential role

simulation plays in the process of learning and scientific

exploration. With the progress of informatics, simulation

models are offering solutions for fields where no other tool can

be utilized or no direct observation is possible. The list of

specific examples to support this with is endless; now let us

only consider the process of mass structure change, of which

we know that it is based on the correlation and collective

behavior of its basic elements (like atoms and molecules).

Obviously, we cannot observe the phenomenon of, say,

moisture condensation on the atomic level, but we are well

aware that what we see in our real world, like moisture, rain,

and dew, among others, is formed out of the relations of the

basic elements.

Simulation tools concentrate on defining basic rules between

the basic elements/particles and simplifying/refining this rule

system until the result coming from running the model is

similar to what we observe in the real world.

With the help of informatics, the processes can be slowed down

(like with nuclear fission), speeded up (like with social

phenomena), magnified (like with gas molecules), or reduced

(like with galactic motions). [1]

The most professional simulation systems are the fruits of

gigantic efforts from developers; therefore, they are very

expensive. [2, 3] In our paper, we are attempting to motivate

our readers to create their own experimentation tools or use

existing systems, which can demonstrate the correspondences

of the given discipline in adequate detail.

At the end of our general introduction, we again emphasize that

simulation is a universal tool that offers the only solution in

several contexts. [4]

We would like to address another important aspect regarding

simulation. In our experiences, simulation systems are highly

interesting for the age group we want to start teaching

programming to. Occasionally, it is even too interesting. Note

that the most important target group of the IT game industry is

this age group, and the majority of the games are interactive

simulation systems with professional visual design.

If we accept these as facts, it becomes self-evident that the goal

of our programming classes should be to make game-like

(simulation) programs, because then the motivation is

guaranteed. If we manage to put our simulation models in a

practical order, through refinement and development, the

students will feel they are progressing on their own while

experiencing success in every step of the process of developing

more and more advanced games (simulation programs). [4]

In our article, just like in our ongoing research/development

project aimed at modernizing simulation tool systems (SziMOT-

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 3 - YEAR 2015 17

Projekt), we are offering a curriculum that defines how to

incorporate simulation (programming) tasks in the general

learning process of programming.

In the following, we will demonstrate this duality in a specific

example.

2. DEFINING THE TASK

We can often find similar models that belong to different

systems. We assume that if we can model the life of a rabbit

population, then we can model the life of a mouse population in

the same way.

Perhaps it is also easy to accept that gas particles in a closed

space and flies locked in a confined container have similar

distributions, even though these two groups are rather different.

(On the long run, it will be true that both the flies and the gas

particles will have a statistically even distribution in the space

available.)

Finally, would we think that there is a parallel between

electrically charged particles, changing electrostatic spaces, and

social processes?

It is just a matter of presentation. If our students are interested

in physical models, then we need to make up a game

(simulation) that is connected to physics. If they are more into

biology or chemistry, we will turn to those disciplines. While, if

it is more humanities that excites them, let us adjust to that. In

each case, there are several models that can be built on each

other if we use some simple rules.

Introductory example:

Let us consider a habitat and fill it up with several entities of

the same kind. (Later on we will define the concept of entity.)

For simplicity’s sake, the habitat will be a rectangular space,

which is divided into square cells, occupied either by one entity

or by none. In the beginning, we do not assume any correlation

between the entities; we simply step them into the next

neighboring cell if available. [5]

A possible solution to this problem (figure 1: Fizika_01.dpr) is

illustrated below, with the initial case and the situation after a

long running time.

Figure 1: Units arranged in a rectangular shape at start (left),

their distribution after 4,000 steps (right).

Figure 2: After 108,000 steps

their homogeneous distribution becomes visible.

We wish to mention that the program to create these figures

does not exceed 30 (yes, thirty) lines of code. (RAD Studio

XE5 Delphi was used.)

Our program contains declaration, initialization, conditions,

loops, and input/output elements; that is, everything a beginner

programmer needs.

If we are not alright with the notion of entity (and we hope this

is the case), then we can call them gas molecules and label the

simulation as the model of filling up a dish. Once students

understand this, we can move on to measuring / examining /

displaying the behavior of the system:

• checking distribution in larger units of the space

(Fizika_02.dpr), and

• checking collisions on the walls (Fizika_03.dpr).

Once our students reach this point, they will immediately want

more of the program. What can we do for them? Let us show

them some ways of extension.

• Let us warm a part of the dish to see how our system

changes. (Fizika_04.dpr)

• Let us define some correlation between our entities (liquid

particles). (Fizika_05.dpr)

• Let us determine the motion of the particles (constant force,

acceleration, location-based acceleration, and so on).

(Fizika_06.dpr)

• Let us allow entry to and exit from the system (by making

the motion of flowing particles constant).

• Let us introduce more kinds of entities into our system.

• Let us add some obstacles.

• Let us examine the collisions on the obstacles.

It is perhaps clear that our simple model was developed so

much, through these extensions, that it became fitting for the

simulation of how flowing objects behave in moving liquid.

If our playful students are still not satisfied, we can introduce

interactive elements into our system, like:

• for moving the particles into one specific part of the space,

or

• for minimizing the resistance of the objects in our space.

Since they do not exceed basic programming competences and

are built on one another, the above tasks provide students with

the sense of success in every step of the process. [6]

In the system of Fizika_06, the maximum step size is 5. We did

not pay attention to the formation of drops. We set the

horizontal forces like this: left 15%, stays firm 28%, and right

57%; and the vertical forces like that: up 59%, stays firm 28%,

and down 57%. After this we ran the program (for a couple of

minutes, appr. 17,000 steps). The process in pictures:

18 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 3 - YEAR 2015 ISSN: 1690-4524

Figure 3: Initial distribution (balanced distribution).

Figure 4: After 3,500 steps (the balanced distribution starts to

disappear, but the collisions still reflect the direction of the

original movements).

Figure 5: After 17,500 steps. (A right shift in the center of

gravity is clearly visible. If we observe the system on the long

run, even the leftward movements come through, but their

frequency follows force impacts.)

3. DESCRIBING THE PROGRAM VERSIONS

In this chapter of the article, we will present our simulation

system that not only engages our students to do programming

but it also guides them into reaching more and more complex

stages.

Fizika_01.dpr

This is our first operating model, the basic version. We were

restricting ourselves to use the simplest tools so to show that

the basic algorithms of the simulation are very simple; thus, the

task can be solved easily.

As a small amendment, we have added the graphical save

function, so we can keep track of the changes of the simulation

space and display it later on like a film.

Let us see what we have used in the program.

• To display the simulation space, we have a table called

StringGrid. The entities are signaled with ’*’. If we add a

new box, an entity may appear there during simulation.

• To execute the consecutive steps of the simulation process,

we have a Timer component, which initiates the simulation

algorithm, based on the constant frame model [1], every

0.001 second.

• To control the simulation, we have a CheckBox (a logical

signaling box).

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 3 - YEAR 2015 19

Figure 6: The simulation space and control panel

with the button to display the graphic result.

While writing the program, our students may get acquainted

with the basics of programming, but we do not explain every

single line to them. Based on experience, students (even more

than adults) are able to make sense of things and adjust to the

environment (so we do not go into details about notions, for

example, like object-orientation or event control).

The programming structures students need to know:

• declaration, initialization, conditions, loops

Fizika_02.dpr

We have extended the first program so it can display the

distribution of the entities in the simulation space.

Consciously, we have moved forward quite a bit with it, so we

can reach the graphic elements as soon as possible. If you think

it is a bold decision, you can choose the numeric display of

row/column distribution frequency, instead of the graphic

display of numeric values.

We have added the option of saving even the graphs this time.

New elements:

• New window to display the results (open a window from a

window).

• Button to open the window and step back.

• Panel(-like) component in the window, to draw boxes

according to the entity frequency of the given rows and

columns. (The long-term even distribution can be detected

by its shape.)

Figure 7: A momentary situation of the distribution.

Few molecules appear on the sides, and no molecules have

reached the lower rows from their original position yet.

New programming structures:

• concept of unit,

• creating/deleting a component.

Fizika_03.dpr

The previous version is supplemented with the display of

collisions in a given time (500 steps). Our, graphic-oriented,

solution for this task was to place isosceles triangles next to the

appropriate sides of the rectangular so the height of the

triangles signals the collisions at the given side after every

series of steps. In this way, we always see the current collisions

only, but the saved frames played one after another will show

an ultimately even distribution.

Figure 8: Illustration of collision and pressure on the walls.

(Fewer collisions can be observed on the side walls than on the

top and the bottom.)

New elements:

• TPath, a free component to display polygons

New programming structures:

• procedures,

• mathematics for calculating triangles.

Fizika_04.dpr

It is in this version that we first apply a tool which enables us to

intervene at any point of the simulation. In a certain part of the

space, we increase the temperature, that is, we allow the

particles of these cells to make bigger (more than one cell)

steps. We introduced the parameter “maximum step distance”,

adding to it a simple surface tool to set the step measure.

We have modified the count of collisions as well, now

considering the molecule’s change of impulse due to its change

of speed as well.

New element:

• New window for setting parameters.

Figure 9: Button for setting parameters (left)

and the control panel (right).

• TSpinBox for setting the temperature any time during the

simulation process.

Fizika_05.dpr

Compared to the previous versions, what we changed here is

that from now on the entities are no longer independent but

their changes can depend on interactions as well. With this we

wanted to show that if the entities attract each other in a certain

radius, that will create special groups. (The molecules will form

drops.)

Two relevant changes were introduced here. One, the space is

randomly filled up at the start; two, the range of attraction

(thus, the resulting pattern) can be set during the simulation.

New element:

20 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 3 - YEAR 2015 ISSN: 1690-4524

• Two new parameters, “neighboring radius” and “filling

ratio”, were added to the window for setting parameters.

Figure 10: Other elements of the control panel.

• When stepping back from the window, the algorithm

randomly places the entities in the given density according

to the defined ratio.

Fizika_06.dpr

Our game has been advanced further with a new setting. Now

the selected entity is able to decide which neighboring cell to

prefer when jumping (direction and distance). We can now

model both the vertical and the horizontal forces, either

separately or jointly.

To make our input tools more colorful and exciting, we are

introducing fairly special control panels in this version. Even if

you are not an expert in programming, do not be intimidated by

this: we are defining an independent object class, with which

we can set the outcomes of our events through a three-stage

event system. We would like to show an example even for

managing small displays like in the case of mobile phones.

The two trapezes meeting at one of their edges, and the triangle

formed between them, cut the space in three. The ratio of the

three spaces can be defined and changed easily, with one

finger. (Naturally, we know that there are easier ways to do it

but in many cases this is still the most effective.)

Figure 11: Ratio of horizontal forces: one is 17% likely to step

left, 29% to stay firm and 54% to step right.

New element:

• Creating an own object class, used for setting the ratio of

three spaces on a touchpad.

4. CONCLUSIONS

With this short series, we have demonstrated a possible way to

develop programming skills through simulation tasks.

We are aware that after the initial steps we have jumped

forward quite a bit, but we firmly believe that after

downloading and examining the source codes, the article will

make sense.

It is not a coincidence that many programming competitions

(Nemes Tihamér OITV [7], Izsák Imre Gyula science

competition [8]), and program product competitions (Neumann

János International Talent Competition [9]) assign more and

more simulation tasks.

Next to the professional simulation programs, we can now

salute programming languages and environments for

simulation, specifically designed for high school students. One

such is NetLogo [10].

9. REFERENCES

[1] L. Horváth, P. Szlávi, L. Zsakó, Modelling and simula-

tion, Mikrológia 1., 2005.

[2] Interactive Science Simulations. University of Colorado

at Boulder, PhET project, 2014.

http://phet.colorado.edu/ (accessed 31 October 2014)

[3] Virtual Amrita Laboratories Universalizing Education.

Amrita Vishwa Vidyapeetham University, 2014.

http://amrita.vlab.co.in/ (accessed 31 October 2014)

[4] P. Szlávi, L. Zsakó, How to apply informatics in public

education, Informatika a Felsőoktatásban’96 – Network-

shop’96, Debrecen, 27–30 August, 1996, conference CD,

pp. 534–543.

[5] M. Eigen, R. Winkler, The laws of the game, Gondolat

Könyvkiadó, 1981.

[6] P. Szlávi, L. Zsakó, IT competences: Modelling the real

world, INFODIDACT 2013, Zamárdi, 21–22 November,

2013, conference CD, pp. 1–17.

[7] Nemes Tihamér National Competition in Informatics –

Category of programming, 2014.

http://tehetseg.inf.elte.hu/nemes/index.html (accessed 31

October 2014)

[8] Izsák Imre Gyula science competition. Zrínyi Miklós

Gimnázium, Zalaegerszeg, 2014.

http://www.zmgzeg.sulinet.hu/izsak/ (accessed 31 October

2014)

[9] Neumann János International Talent Competition, I.

Béla Gimnázium, Szekszárd, 2014.

http://www.ibela.hu/neumann/ (accessed 31 October

2014)

[10] P.Bernát, “Modelling and simulation in education and the

NetLogo simulation environment”, Teaching

Mathematics and Computer Science Vol. 12., No. 2.

(2014), pp. 229–240.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 13 - NUMBER 3 - YEAR 2015 21

	EA605LC15

