

An Active Learning Module to Introduce Students

to the Importance of Flowcharts and Technical Documentation

Mark M. BUDNIK, Rebecca THOMAS, Stewart THOMAS

Electrical and Computer Engineering, Valparaiso University

Valparaiso, IN USA

and

Computing and Information Sciences, Valparaiso University

Valparaiso, IN USA

ABSTRACT

The nature of problems typically tackled in initial programming

courses can lead students to dismiss problem solving techniques

and processes. Faculty and students in Programming 1 and 2

classes are prone to focus on the mechanics and syntax of

programming at the expense of building increasingly complex

and realistic models of the solution. To motivate undergraduate

students to accept the importance of flowcharts, pseudo-code,

documentation, and other development tools, we present a

series of active learning lessons for introductory programming

classes built and tested at Valparaiso University. These lessons

introduce development tools and problem solving as vital

components of an overall solution and provide opportunities for

students to see their value in real world applications. Following

the lessons, 100% of the students recognized the importance of

development tools, and 95% of the students identified a desire

to learn more about how they can be used.

Keywords: CS1, Programming 1, Flowcharts, Technical

Documentation, Development Tools.

1. INTRODUCTION

Introductory programming classes are often overloaded to

maximize the amount of programming content [1] and lack

sufficient attention to the organization of computer programs

and algorithms through the use of flowcharts and other technical

documentation. When included, students perceive these topics

as unimportant, trivial, or rather obvious and brush them aside

rather than identifying essential skills to add to their growing

repertoire.

To motivate undergraduate students to embrace the idea that

flowcharts and technical documentation are important, this

paper presents a series of active learning lessons suitable for use

in Programming 1 and Programming 2 classes. The lessons

introduce these topics as vital components to an overall solution

and provide opportunities for students to perceive their value in

real world applications.

Section 2 provides an introduction of our three active learning

lessons. Sections 3 and 4 provide a summary of our assessment

and evaluation of the lessons. Finally, Section 5 presents our

conclusions.

2. ACTIVE LEARNING LESSONS

Valparaiso University has developed and tested three active

learning modules to help demonstrate the importance of

flowcharts and technical documentation in the development of

programs, algorithms, and systems. The lessons are structured

to allow instructors to provide a significant amount of assistance

at the start of the first lesson, but reduce the levels of assistance

as students work through the three lessons. The duration and

technical difficulty of each subsequent activity increases. Each

lesson includes manipulatives to address different learning

styles. The modules are suitable for implementation in a typical

2 – 3 hour laboratory session, or they can be implemented

individually during traditional 50 minute lecture periods [2].

While it is appropriate to use the lessons as separate modules,

we carried out all three lessons in sequence with the same group

of students. The first and second lessons followed the same

basic procedure (see Table 1). Students formed into teams of 2

– 4 people. Each team was presented with a toy puzzle and

given the task of describing the fastest way to complete the

puzzle. Groups were given time to understand how the toy

operates and write directions (Steps 1 and 2). After collecting

the instruction sets, a faculty member was given a brief period

to review (Step 3) and then execute (Step 4) the student

directions without assistance from the students. These trials

were performed with the students as the audience where the

quality metric was the time needed for the faculty member to

execute the directions. Next, students considered and discussed

the various solutions during a gallery walk (Step 5) [3, 4].

To conclude the lessons, the faculty member summarized the

techniques that worked and those that didn’t and asked students

if it was frustrating that they weren’t allowed to talk during the

execution of their written directions (Step 6). Best practices and

general challenges in both problem solving and communicating

operational instructions were then discussed.

Table 1. Experimental Sequence for Lessons 1 and 2.

Step Lesson 1 Lesson 2 Content

1 3 minutes N / A Understand toy

operation

2 4 minutes 15 minutes Write directions

3 1 minute 1–2 minutes Faculty review

4 (varied) (varied) Execution

5 5 minutes 5 minutes Gallery walk

6 3 minutes 3 minutes Roundup discussion

Nicholas ROSASCO

26 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 4 - YEAR 2017 ISSN: 1690-4524

Lesson 1: Tupperware Shape-O Toy
In the first lesson, each team was given a Tupperware Shape-O

Toy (see Figure 1) [5]. The toy is a dodecahedron shape with

ten different holes (for example, cross, square, triangle, circle,

etc.) and includes ten different, numbered, yellow plastic shapes

that each fit through only one of the ten holes. Two of the

dodecahedron sides are used for handles to carry and open the

toy. The teams were instructed to determine and document the

fastest way to put all ten shapes into the respective holes of the

Shape-O Toy.

Figure 1. Tupperware Shape-O Toy consisting of a

dodecahedron with ten unique shapes. Each shape fits into a

hole on only one face of the dodecahedron.

Lesson 2: Superfection

In the second lesson, students remained in the same teams.

Students gathered around a central table and the faculty member

introduced the Superfection game shown in Figure 2.

Superfection [6] is an extended version of the more common

Perfection [7] game.

Superfection consists of a base unit (which includes a timer

with a start/stop switch) and 32 colored plastic puzzle pieces.

Each of the 32 pieces is unique and can be matched with exactly

one other piece to form a cube. The object of the game is to

match the 32 colored plastic pieces into 16 cubes and place

them on the board in as little time as possible. (Note, the 16

cubes can be positioned in any order on the base unit. Their

exact position on the base unit is unimportant.)

Figure 2. The Superfection game has 32 plastic puzzle pieces

that each have precisely one matching puzzle piece to form one

of 16 cubes.

Teams each took one Superfection game and were given the

task of creating written instructions to assemble and place the

32 Superfection game pieces as quickly as possible. During this

step, students were instructed that each team could only ask the

faculty member two questions and also there would be a prize

awarded for this round (based upon how well their instructions

worked).

As with the previous lesson, after the students were finished,

faculty executed the directions, students performed a gallery

walk, and a concluding discussion was held (see Table 1). The

best performing team was determined based on the faculty’s

fastest instruction execution time.

Lesson 3: Theme Park Attraction
In the final lesson, students saw the importance of efficient

algorithm design and practiced using development tools with a

simulated theme park attraction control system. This provided

students the opportunity to develop a process flow for a real

world application and see how their work impacts solution

efficiency.

Students were told they are engineers and programmers at a

theme park. Unfortunately, a previous team responsible for

developing an attraction did not do a good job of documenting

their work. The students were tasked with developing the

flowchart and documentation for operating the theme park

attraction in an efficient manner.

The students were then split into two rooms. The Tower of

Terror attraction [8] at Disney Hollywood Studios was used for

one room of students. The other room of students used the

Grizzly River Run attraction [9] at Disney California

Adventure. Faculty members in each room explained to the

students how their attractions worked [10, 11], and gave

students a few minutes to ask questions about the attraction.

The students were then given the simulator for their respective

attraction [12]. Screen shots from the two simulators are shown

in Figures 3 (Tower of Terror) and 4 (Grizzly River Run). The

simulators are non-trivial and resemble many industrial

automation systems having numerous checkpoints in the flow

that affect the critical path. Students must develop an algorithm

using inputs from approximately 30 asynchronous sensors and

actuate 32 outputs to control the flow of guests and maximize

the ride capacity. In our lesson, teams were given 25 minutes to

develop their algorithm.

Figure 3. Tower of Terror attraction simulator.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 4 - YEAR 2017 27

Figure 4. Grizzly River Run attraction simulator.

After the algorithms were complete, the student teams swapped

algorithms: Those that worked on the Tower of Terror were

given an algorithm for Grizzly River Run, and vice versa. The

student teams then had the opportunity to implement the

algorithm developed by their peers. They were able to learn

how difficult it can be to follow someone else’s instructions and

the frustration of watching other people try to implement your

work.

Finally, the faculty member asked students to summarize what

they learned and how their opinions of technical documentation

and flowcharting changed in a question and answer session and

a post-activity survey.

3. EXTRACURRICULAR ASSESSMENT

AND EVALUATION

In this section, we discuss the pre-survey results, provide an

analysis of the students’ work, present our post-survey results,

and provide a brief discussion of the larger learning outcomes in

an extracurricular setting.

Pre-Survey Results

Prior to beginning the lessons, students responded to a brief pre-

survey consisting of five questions (shown below), each

answered on a 5-point, Likert-like scale:

• In my computing assignments, I carefully document how to

accomplish a task. (Figure 5)

• I know how to diagram a flow in a standardized way (i.e.,

UML, pseudocode, flowchart, etc.). (Figure 6)

• I begin tasks by planning my solution before coding the

implementation. (Figure 7)

• I believe technical documentation is an important part of the

design process. (Figure 8)

• Which is more important to you: Planning a solution or

implementing a solution? (Figure 9)

We found that our students generally agree that documentation

is an important part of the design process. However, while

students believe planning is important, a majority do not

routinely plan their work before implementing a software

solution. (Responses for the last two questions are shown later

in the paper in Figures 8 and 9 alongside student post-survey

responses.)

0%

10%

20%

30%

40%

50%

60%

5 - Strongly

Agree

4 3 2 1 - Strongly

Disagree

Figure 5. In my computing assignments, I carefully document

how to accomplish a task.

0%

10%

20%

30%

40%

50%

60%

70%

80%

5 - Strongly

Agree

4 3 2 1 - Strongly

Disagree

Figure 6: I know how to diagram a flow in a standardized way

(i.e., UML, pseudocode, flowchart, etc.).

0%

10%

20%

30%

40%

50%

60%

70%

5 - All of the

Time

4 - Most of the

Time

3 - Some of

the Time

2 -

Occasionally

1 - Never

Figure 7: I begin tasks by planning my solution before coding

the implementation.

Shape-O Toy

Based on the overall approach, the instructions to solve the

Shape-O Toy can be broadly divided into two categories. The

instructions with the fastest completion times were variations

of: 1) Picking up a shape at random, 2) Rotating the ball to find

the corresponding hole, and 3) Continuing until the puzzle was

completed.

The second category of instructions were more detailed and

provided tasks for each individual piece. For example, one team

asked users to find the “cross” piece and put it into the

corresponding hole, then find the “circle” piece and put it into

28 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 4 - YEAR 2017 ISSN: 1690-4524

the corresponding hole, etc. This resulted in a longer completion

time due to the extra steps and careful searching of both the

instructions and the pieces involved.

After watching a faculty member follow the instructions and

struggle with the Shape-O Toy, the groups gathered to discuss

what seemed to work best. Students noted that what seemed

good or obvious to them was not evident to someone else

reading their instructions. Students were then given an

optimized algorithm which allowed a faculty member to insert

all ten pieces in a very short time. The optimized algorithm

required the user to identify the shape of the hole on the

dodecahedron immediately in front of them. Then, they were

instructed to visually inspect the ten plastic pieces for the

correct shape, insert the correct shape, and then rotate the

dodecahedron to the next hole. This process is optimized

because it relies upon minimal manipulation of the physical

components and takes advantage of the rapid speed at which

users can visually identify distinct shapes.

Analogies were then drawn to real world industrial automation

systems. Computers and visualization technologies are orders of

magnitude faster than physical systems. To optimize system

design, sometimes developers must rethink their initial

approach to an algorithm to take advantage of the available

technologies.

Superfection Game
For the Superfection game, the groups’ instructions varied in

the amount of detail they attempted to convey and the method

used to convey information. Student groups that wrote detailed

instructions in list form struggled with describing the non-

standard, three-dimensional game pieces. The lack of a shared

vocabulary posed a challenge for description and caused

confusion during execution. Several groups encountered

complications when they used color descriptions of pieces in

their instructions and later discovered that the colors of the

pieces were not consistent across all game sets.

One of the fastest instructions began by filling each row of the

board with a specific color piece that would be the base for a

cube. Next, a top piece that would complete a cube was chosen

at random and visually matched to a base. Since the 16 base

pieces had already been placed, this reduced the sorting

problem in half. Additionally, as each cube consists of a

different color base and top, the row corresponding to the color

of the selected top piece could be eliminated. Another fast

instruction set included a top-level drawing of the completed

solution.

Other instructions that took longer to solve used more detailed

descriptions and matched a top and bottom to make the cube

before placing them on the board. This seemed to work out well

when small groups of game pieces could be identified by

features such as a rounded edge or connection on a diagonal,

but failed when it was more difficult to quickly describe

commonalities between complex game pieces.

After performing the gallery stroll, students thought that using a

diagram of the solution was a best practice and noted that it was

helpful to see what you are trying to make. Additionally,

students recognized that finding similarities between pieces and

trying to identify them was a strategy that did not work well.

Theme Park Attraction Simulators
Students were given the most time to work on this lesson, and

their work showcased a significant amount of effort to first

understand how the relatively complex attraction controls

worked and then effectively document their operation.

Dividing the student teams into pairs resulted in two positive

effects. First, with pairs, the groups developing the

documentation were smaller and each member was fully

involved in the process. Second, unbeknownst to each other,

the pairs were working on separate projects for their peers to

implement. Therefore, each pair got the opportunity to not only

develop a flowchart and process for their teammates, but also to

implement their classmates’ work.

The teams that did best on the third lesson tended to remain the

most focused on the task across the entire 25-minute span. In

retrospect, it would have been better to allow students more

time to complete this lesson. By allowing up to 40 minutes, the

students would have the opportunity to take momentary breaks

from the relatively intense time pressure that the simulator

presents to the user.

Post-Survey Results
After completing the three lessons, students were given a post-

survey consisting of the following five questions scored on a 5-

point Likert-like scale:

• I believe technical documentation is an important part of the

design process. (Figure 8, also in pre-survey)

• Which is more important to you: Planning a solution or

implementing a solution? (Figure 9, also in pre-survey)

• I would like to know more about how to diagram a flow in a

standardized way (i.e., UML, pseudocode, flowchart, etc.).

(Figure 10)

• This workshop helped me understand the larger challenges

of design. (Figure 11)

• I would like to see more activities like this as a part of a

regular class. (Figure 12)

The response distributions for the five questions are plotted in

Figures 8–12. These responses show that the goal of motivating

students to accept the idea that flow charts and technical

documentation are important was successfully met.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 - Strongly

Agree

4 3 2 1 - Strongly

Disagree

PRE-SURVEY POST-SURVEY

Figure 8. Pre- and post-survey: I believe technical

documentation is an important part of the design process.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 4 - YEAR 2017 29

0%

5%

10%

15%

20%

25%

30%

35%

40%

5 - Planning Is

Much More

Important

4 3 - Equal

Importance

2 1 -

Implementing

Is Much More

Important

PRE-SURVEY POST-SURVEY

Figure 9. Pre- and post-survey: Which is more important to you:

Planning a solution or implementing a solution?

0%

10%

20%

30%

40%

50%

60%

5 - Strongly

Agree

4 3 2 1 - Strongly

Disagree

Figure 10. Post-survey only: I would like to know more about

how to diagram a flow in a standardized way (i.e., UML,

pseudocode, flowchart, etc.).

0%

10%

20%

30%

40%

50%

60%

70%

5 - Strongly

Agree

4 3 2 1 - Strongly

Disagree

Figure 11. Post-survey only: This workshop helped me

understand the larger challenges of design.

0%

10%

20%

30%

40%

50%

60%

70%

5 - Strongly

Agree

4 3 2 1 - Strongly

Disagree

Figure 12. Post-survey only: I would like to see more activities

like this as a part of a regular class.

Discussion of Larger Learning Outcomes
The three exercises encompass aspects of various problem

spaces such as user interface design and programming

languages. They also demonstrate the challenge in technical

writing for an unknown audience. The certainty of a shared or at

least easily grasped vocabulary eases the challenge of creating

documentation for the Shape-O Toy. For the Superfection game

and attraction simulators, the inability to use a simple

vocabulary significantly raised the complexity challenge and

demonstrated the increased likelihood of end-user confusion.

These lessons demonstrate the risks that can occur when

directions cannot be easily understood. Such failures to

communicate clearly are frequent contributors to accidents,

mishaps, and dangerous misuse. The use of color-based

descriptions also provides the opportunity to discuss

accessibility issues as important considerations in the design

phase.

The differences in task complexity across all three exercises can

be used to discuss operational problems in the context of

complete systems. The whole exercise and the contrasts among

the lessons serves as a way to introduce the vocabulary of

processes and algorithms. Asking students to identify measures

and metrics and define success could be a follow-up activity or

out of class assignment. Further discussion could also include

questions of labeling steps for repetition (looping), how to

handle questions (conditionals), and initial conditions

(initialization).

Additionally, we see value in these exercises beyond

introductory programming courses. For example, the

complexity of Superfection versus the simpler Shape-O Toy

could be illustrate the comparison of CISC versus RISC devices

in a computer architecture course. These exercises are also

compelling for project-driven or capstone-style courses with a

strong technical writing or documentation component.

30 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 4 - YEAR 2017 ISSN: 1690-4524

4. CLASSROM ASSESSMENT AND EVALUATION

In this section, we discuss how the various modules were

integrated in parts in two separate classes. The Tupperware

Shape-O Toy and Superfection game were used in a sophomore

level Programming 1 course (ECE251) for electrical and

computer engineering students. The theme park attraction

control simulators were used in a general engineering design

elective (ECE490) populated primarily by sophomores

and juniors and included students majoring in biomedical, civil,

computer, electrical, and mechanical engineering.

ECE251 / Programming 1 Implementation
ECE251 is an introductory programming course designed for

second year electrical engineering and computer engineering

students. For many students, this course is an initial exposure to

computer programming. ECE251 uses the C programming

language to teach students the basics of memory, variable

usage, program compilation and structured programming using

functions. Upon completion, students are prepared for a second

semester of object-oriented programming or a course in

embedded microcontroller program design.

As an introductory computer programming course, it is

important for students to understand the basics of program

design and need for careful planning. To motivate students to

see the need for tools like flowcharts and pseudocode, a subset

of the modules presented in this paper were administered to the

students during a regular course meeting.

The structure for this activity is shown in the table below. This

lesson was administered by a single professor and one

undergraduate student in two sections of ECE251. While each

section meeting is 75 minutes, the activity was planned to last

for approximately 50 minutes with a short lecture taking up the

meeting balance. Students were divided into teams of two for

this activity.

Table 2. Experimental Sequence for ECE251.

Item
Time

(min.)

Administrative items

• Daily quiz

• Announcements

5

Lecture on new material 15

Shape-O Module

• Understand toy, determine fastest solution

• Write instructions

10-15

Professor and TA implement Shape-O instructions

• Discussion of algorithm differences
10

Superfection Module

• Understand toy, determine fastest solution

• Write instructions

10-15

Discussion of Shape-O and Superperfection

instructions
5

Overall discussion on documentation 5-10

TOTAL TIME 60-75

This activity took place three weeks into a 15 week semester.

Students were capable of writing basic programs (i.e., calculate

the area of a triangle and print the result) but had not yet seen a

need for a structured design tool. Along with this activity,

students were given a homework assignment to produce a

flowchart that outlines their process for printing the binary

representation of a 32-bit number stored in memory. This was

the students’ first assignment that asked for a flowchart (see

Figures 12 and 13).

Figure 12. Example of ECE251 algorithm for printing a binary

representation of a 32-bit number that meets expectations.

Figure 13. Example of ECE251 algorithm for printing a binary

representation of a 32-bit number that is progressing toward

expectations.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 4 - YEAR 2017 31

The impact of this activity was assessed in two ways. Student

responses to surveys administered before and after the activity

were assessed (see Figure 14). Second, student performance on

their flowchart assignment was assessed by the professor (see

Figure 15).

Figure 14. Pre- and post-survey ECE251: Which is more

important to you: Planning a solution or implementing a

solution?

Figure 15. Assessment of ECE251 flowchart assignment.

Data from the assessment show that students recognized the

need for planning complex tasks. Further, data from the

flowchart assignment show that a large set of students were

capable of creating documentation for a programming task with

little previous guidance. This creates a strong starting point for

continuing to practice design and documentation procedures

regardless of specific discipline.

This activity shows one example of how the modules presented

in this paper function in a typical classroom setting. Data from

the ECE251 course suggests that the modules are strongest

when taken together. In this offering, students only saw a few

examples of a professor implementing the Shape-O instructions

and no examples of the Superperfection instructions. To make a

strong impact, it is suggested to run a short 20 minute activity

with the Shape-O toy on one day, a 20 minute activity with

Superperfection the next day, and then culminate on day 3 with

the theme park attraction simulators.

ECE490 / Innovation in Engineering Design
ECE490 is an engineering elective for all engineering majors. It

provides additional opportunities for students to engage in

design by providing multiple short-term projects each focused

on a specific step in the design process or various design tools.

As outlined in Section 2, Lesson 3, ECE490 students were

assigned the role of engineers at a theme park with the task of

developing the documentation for operating an attraction in an

efficient manner. Again, the task is non-trivial as they must

develop an algorithm using inputs from approximately 30

asynchronous sensors and actuate 32 outputs to control the flow

of guests and maximize the ride capacity. In this lesson,

however, the ECE490 students were given a week to learn how

the simulator works and develop their flowchart. Also, unlike

the extracurricular implementation, a significant portion of the

ECE490 students (biomedical, civil, and mechanical

engineering students) have not had a Programming 1 course,

and did not have a prior introduction to flowcharting. The

electrical and computer engineering students in ECE490 had

completed a Programming 1 course, but had not yet been

introduced to interrupt driven systems.

The students performed admirably on the exercise, despite the

majority lacking a strong background in flow charting or related

processes. The additional time allowed the students to truly

understand the intricacies of the simulator’s operation and

develop, generally, very robust control algorithms. They ranged

from pseudocode descriptions (see Figure 16) to more detailed

flow charts (see Figure 17), all the way to recognizing the need

for an interrupt driven system (see Figure 18). In all, 27% of

the student work was classified as Progressing Toward

Expectations, and 73% of the submissions were deemed to Meet

or Exceed our expectations. Additionally, the investment by the

student teams in the assignment allowed for a much richer

understanding of the control systems and provided a canvas for

a much deeper, student-led discussion of optimizing a system’s

flow.

Figure 16. Pseudocode description of student control algorithm

for Tower of Terror theme park attraction.

32 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 4 - YEAR 2017 ISSN: 1690-4524

Figure 17. Excerpt of detailed flowchart of student control

algorithm for Tower of Terror theme park attraction.

From an educator’s perspective, the most refreshing aspect of

the inclusion of our lessons in the classes was that the students

“got it.” They able to demonstrate reasonable work toward

developing system documentation and flowcharts. Each group

showed progress toward flowcharting maturity, and showed

improvement in motivation and understanding of flowcharting

and planning. Even allowing for a subset of the three lessons in

ECE251 and ECE490, each variation showed improvement

even with the less immersed experience.

Additionally, each group had some sort of outcome that was

unexpected. In ECE251, we had a “hook” that opened the door

for the instructor to start a discussion of pseudocode and other

planning tools. In ECE490, submissions allowed us to

introduce the concept of functions and subroutines for the

repetition of activities and thinking about synchronous vs.

asynchronous behavior. Finally, following the submission of

the student work, the documentation provided material for a

thorough, thoughtful conversation into best practices and areas

for improvement.

5. CONCLUSION

We have presented a series of active learning lessons to show

development tools and problem solving as vital components of

an overall solution. These lessons motivate students to see the

value of such tools through immediate, practical applications.

Assessment of pre- and post-lesson surveys indicate that our

students, after participating in these exercises, are not only

motivated to use suitable tools and planning in their coding

projects, but are also interested in learning more about standard

documentation and planning tools. In future work, we will

continue refining our modules and further study their role

within the curricula.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 4 - YEAR 2017 33

Figure 18. Detailed flowchart of interrupt driven student control algorithm for Tower of Terror theme park attraction.

34 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 4 - YEAR 2017 ISSN: 1690-4524

6. REFERENCES

[1] D.Baldwin, V.Barr, A.Briggs, J.Havill, B.Maxwell,

H.M.Walker, “CS 1: Beyond Programming,”

Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education, Seattle, WA,

March 8-11, 2017.

[2] M.M.Budnik, R.Thomas, N.Rosasco, S.Thomas, “An

Active Learning Module to Introduce Students to the

Importance of Flowcharts and Technical Documentation,”

Proceedings of the 2017 EISTA Conference on Educaiton

and Information Systems, Technologies, and Applications,

Orlando, FL, July 8-11, 2017.

[3] J. L.Kolonder, “Facilitating the Learning of Design

Practices: Lesson Learned from and Inquiry into Science

Education,” Journal of Industrial Teacher Education,

39(3), 2002, pp. 1-31.

[4] B.Fasse, and J.L.Kolodner, “Evaluating Classroom

Practices Using Qualitative Research Methods: Defining

and Refining the Process,” Fourth International Conference

of the Learning Sciences, pp. 193-198, Mahwah, NJ:

Erlbaum.

[5] Tupperware Brands Corporation, “Shape-O Toy,”

http://www.tupperware.com/shape-o-toy-4657.html,

retrieved March 31, 2017.

[6] Lakeside Games, “Superfection,”

boardgamegeek.com/boardgame/8943/superfection,

retrieved March 31, 2017.

[7] Hasbro Games, “Perfection,” www.hasbro.com/en-

us/product/the-original-game-of-perfection:8F011721-

6D40-1014-8BF0-9EFBF894F9D4, Retrieved March 31,

2017.

[8] Walt Disney World, “The Twilight Zone Tower of

TerrorTM, disneyworld.disney.go.com/attractions

/hollywood-studios/twilight-zone-tower-of-terror/,

Retrieved March 31, 2017.

[9] Disney California Adventure, “Grizzly River Run,”

https://disneyland.disney.go.com/attractions/disney-

california-adventure/grizzly-river-run/, retrieved March 31,

2017.

[10] M.Smith, “Twilight Zone Tower of Terror,”

http://www.martinsvids.net/?p=626, retrieved March 31,

2017.

[11] Tower Secrets, “Inside the Tower of Terror Construction,”

http://towersecrets.com/tower-of-terror-construction-video-

translation/, Retrieved March 31, 2017.

[12] Themagical, “Control Your Favorite Ride,”

https://www.themagical.nl/, retrieved March 31, 2017.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 15 - NUMBER 4 - YEAR 2017 35

	EA880IQ17.pdf

