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ABSTRACT 

 
The nature of problems typically tackled in initial programming 

courses can lead students to dismiss problem solving techniques 

and processes.  Faculty and students in Programming 1 and 2 

classes are prone to focus on the mechanics and syntax of 

programming at the expense of building increasingly complex 

and realistic models of the solution. To motivate undergraduate 

students to accept the importance of flowcharts, pseudo-code, 

documentation, and other development tools, we present a 

series of active learning lessons for introductory programming 

classes built and tested at Valparaiso University. These lessons 

introduce development tools and problem solving as vital 

components of an overall solution and provide opportunities for 

students to see their value in real world applications. Following 

the lessons, 100% of the students recognized the importance of 

development tools, and 95% of the students identified a desire 

to learn more about how they can be used. 

 

Keywords: CS1, Programming 1, Flowcharts, Technical 

Documentation, Development Tools. 

 

 

1.  INTRODUCTION 
 

Introductory programming classes are often overloaded to 

maximize the amount of programming content [1] and lack 

sufficient attention to the organization of computer programs 

and algorithms through the use of flowcharts and other technical 

documentation. When included, students perceive these topics 

as unimportant, trivial, or rather obvious and brush them aside 

rather than identifying essential skills to add to their growing 

repertoire. 

 

To motivate undergraduate students to embrace the idea that 

flowcharts and technical documentation are important, this 

paper presents a series of active learning lessons suitable for use 

in Programming 1 and Programming 2 classes. The lessons 

introduce these topics as vital components to an overall solution 

and provide opportunities for students to perceive their value in 

real world applications. 

 

Section 2 provides an introduction of our three active learning 

lessons. Sections 3 and 4 provide a summary of our assessment 

and evaluation of the lessons. Finally, Section 5 presents our 

conclusions. 

 

 

2.  ACTIVE LEARNING LESSONS 

 
Valparaiso University has developed and tested three active 

learning modules to help demonstrate the importance of 

flowcharts and technical documentation in the development of 

programs, algorithms, and systems.  The lessons are structured 

to allow instructors to provide a significant amount of assistance 

at the start of the first lesson, but reduce the levels of assistance 

as students work through the three lessons. The duration and 

technical difficulty of each subsequent activity increases.  Each 

lesson includes manipulatives to address different learning 

styles. The modules are suitable for implementation in a typical 

2 – 3 hour laboratory session, or they can be implemented 

individually during traditional 50 minute lecture periods [2]. 

 

While it is appropriate to use the lessons as separate modules, 

we carried out all three lessons in sequence with the same group 

of students. The first and second lessons followed the same 

basic procedure (see Table 1). Students formed into teams of 2 

– 4 people. Each team was presented with a toy puzzle and 

given the task of describing the fastest way to complete the 

puzzle. Groups were given time to understand how the toy 

operates and write directions (Steps 1 and 2). After collecting 

the instruction sets, a faculty member was given a brief period 

to review (Step 3) and then execute (Step 4) the student 

directions without assistance from the students. These trials 

were performed with the students as the audience where the 

quality metric was the time needed for the faculty member to 

execute the directions. Next, students considered and discussed 

the various solutions during a gallery walk (Step 5) [3, 4].   

 

To conclude the lessons, the faculty member summarized the 

techniques that worked and those that didn’t and asked students 

if it was frustrating that they weren’t allowed to talk during the 

execution of their written directions (Step 6).  Best practices and 

general challenges in both problem solving and communicating 

operational instructions were then discussed.  

 

Table 1.  Experimental Sequence for Lessons 1 and 2. 

Step Lesson 1 Lesson 2 Content 

1 3 minutes   N / A Understand toy 

operation 

2 4 minutes 15 minutes Write directions 

3 1 minute 1–2 minutes Faculty review 

4 (varied) (varied) Execution 

5 5 minutes 5 minutes Gallery walk 

6 3 minutes 3 minutes Roundup discussion 

Nicholas ROSASCO 
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Lesson 1:  Tupperware Shape-O Toy 
In the first lesson, each team was given a Tupperware Shape-O 

Toy (see Figure 1) [5]. The toy is a dodecahedron shape with 

ten different holes (for example, cross, square, triangle, circle, 

etc.) and includes ten different, numbered, yellow plastic shapes 

that each fit through only one of the ten holes. Two of the 

dodecahedron sides are used for handles to carry and open the 

toy. The teams were instructed to determine and document the 

fastest way to put all ten shapes into the respective holes of the 

Shape-O Toy.   

 

 
Figure 1.  Tupperware Shape-O Toy consisting of a 

dodecahedron with ten unique shapes. Each shape fits into a 

hole on only one face of the dodecahedron. 

 

Lesson 2:  Superfection  

In the second lesson, students remained in the same teams. 

Students gathered around a central table and the faculty member 

introduced the Superfection game shown in Figure 2. 

Superfection [6] is an extended version of the more common 

Perfection [7] game. 

 

Superfection consists of a base unit (which includes a timer 

with a start/stop switch) and 32 colored plastic puzzle pieces.  

Each of the 32 pieces is unique and can be matched with exactly 

one other piece to form a cube. The object of the game is to 

match the 32 colored plastic pieces into 16 cubes and place 

them on the board in as little time as possible. (Note, the 16 

cubes can be positioned in any order on the base unit. Their 

exact position on the base unit is unimportant.)   

  
Figure 2.  The Superfection game has 32 plastic puzzle pieces 

that each have precisely one matching puzzle piece to form one 

of 16 cubes. 

  

 

 

 

 

Teams each took one Superfection game and were given the 

task of creating written instructions to assemble and place the 

32 Superfection game pieces as quickly as possible. During this 

step, students were instructed that each team could only ask the 

faculty member two questions and also there would be a prize 

awarded for this round (based upon how well their instructions 

worked). 

 

As with the previous lesson, after the students were finished, 

faculty executed the directions, students performed a gallery 

walk, and a concluding discussion was held (see Table 1). The 

best performing team was determined based on the faculty’s 

fastest instruction execution time. 

 

Lesson 3:  Theme Park Attraction 
In the final lesson, students saw the importance of efficient 

algorithm design and practiced using development tools with a 

simulated theme park attraction control system. This provided 

students the opportunity to develop a process flow for a real 

world application and see how their work impacts solution 

efficiency. 

 

Students were told they are engineers and programmers at a 

theme park.  Unfortunately, a previous team responsible for 

developing an attraction did not do a good job of documenting 

their work. The students were tasked with developing the 

flowchart and documentation for operating the theme park 

attraction in an efficient manner. 

 

The students were then split into two rooms. The Tower of 

Terror attraction [8] at Disney Hollywood Studios was used for 

one room of students. The other room of students used the 

Grizzly River Run attraction [9] at Disney California 

Adventure. Faculty members in each room explained to the 

students how their attractions worked [10, 11], and gave 

students a few minutes to ask questions about the attraction.  
 
The students were then given the simulator for their respective 

attraction [12]. Screen shots from the two simulators are shown 

in Figures 3 (Tower of Terror) and 4 (Grizzly River Run). The 

simulators are non-trivial and resemble many industrial 

automation systems having numerous checkpoints in the flow 

that affect the critical path. Students must develop an algorithm 

using inputs from approximately 30 asynchronous sensors and 

actuate 32 outputs to control the flow of guests and maximize 

the ride capacity.  In our lesson, teams were given 25 minutes to 

develop their algorithm.   

 

 
Figure 3.  Tower of Terror attraction simulator. 
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Figure 4.  Grizzly River Run attraction simulator. 

 

After the algorithms were complete, the student teams swapped 

algorithms: Those that worked on the Tower of Terror were 

given an algorithm for Grizzly River Run, and vice versa. The 

student teams then had the opportunity to implement the 

algorithm developed by their peers. They were able to learn 

how difficult it can be to follow someone else’s instructions and 

the frustration of watching other people try to implement your 

work. 

 

Finally, the faculty member asked students to summarize what 

they learned and how their opinions of technical documentation 

and flowcharting changed in a question and answer session and 

a post-activity survey. 

 

3.  EXTRACURRICULAR ASSESSMENT  

AND EVALUATION 

 
In this section, we discuss the pre-survey results, provide an 

analysis of the students’ work, present our post-survey results, 

and provide a brief discussion of the larger learning outcomes in 

an extracurricular setting.  

 

Pre-Survey Results 

Prior to beginning the lessons, students responded to a brief pre-

survey consisting of five questions (shown below), each 

answered on a 5-point, Likert-like scale: 

• In my computing assignments, I carefully document how to 

accomplish a task.  (Figure 5) 

• I know how to diagram a flow in a standardized way (i.e., 

UML, pseudocode, flowchart, etc.).  (Figure 6) 

• I begin tasks by planning my solution before coding the 

implementation.  (Figure 7) 

• I believe technical documentation is an important part of the 

design process.  (Figure 8) 

• Which is more important to you: Planning a solution or 

implementing a solution?  (Figure 9) 

 

We found that our students generally agree that documentation 

is an important part of the design process. However, while 

students believe planning is important, a majority do not 

routinely plan their work before implementing a software 

solution.  (Responses for the last two questions are shown later 

in the paper in Figures 8 and 9 alongside student post-survey 

responses.) 

 

0%

10%

20%

30%

40%

50%

60%

5 - Strongly

Agree

4 3 2 1 - Strongly

Disagree
 

Figure 5.  In my computing assignments, I carefully document 

how to accomplish a task. 
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Figure 6:  I know how to diagram a flow in a standardized way 

(i.e., UML, pseudocode, flowchart, etc.). 
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Figure 7:  I begin tasks by planning my solution before coding 

the implementation. 

 

Shape-O Toy  

Based on the overall approach, the instructions to solve the 

Shape-O Toy can be broadly divided into two categories. The 

instructions with the fastest completion times were variations 

of: 1) Picking up a shape at random, 2) Rotating the ball to find 

the corresponding hole, and 3) Continuing until the puzzle was 

completed. 

  

The second category of instructions were more detailed and 

provided tasks for each individual piece. For example, one team 

asked users to find the “cross” piece and put it into the 

corresponding hole, then find the “circle” piece and put it into 
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the corresponding hole, etc. This resulted in a longer completion 

time due to the extra steps and careful searching of both the 

instructions and the pieces involved.  

 

After watching a faculty member follow the instructions and 

struggle with the Shape-O Toy, the groups gathered to discuss 

what seemed to work best. Students noted that what seemed 

good or obvious to them was not evident to someone else 

reading their instructions. Students were then given an 

optimized algorithm which allowed a faculty member to insert 

all ten pieces in a very short time. The optimized algorithm 

required the user to identify the shape of the hole on the 

dodecahedron immediately in front of them.  Then, they were 

instructed to visually inspect the ten plastic pieces for the 

correct shape, insert the correct shape, and then rotate the 

dodecahedron to the next hole.  This process is optimized 

because it relies upon minimal manipulation of the physical 

components and takes advantage of the rapid speed at which 

users can visually identify distinct shapes. 

 

Analogies were then drawn to real world industrial automation 

systems. Computers and visualization technologies are orders of 

magnitude faster than physical systems. To optimize system 

design, sometimes developers must rethink their initial 

approach to an algorithm to take advantage of the available 

technologies. 

 

Superfection Game  
For the Superfection game, the groups’ instructions varied in 

the amount of detail they attempted to convey and the method 

used to convey information. Student groups that wrote detailed 

instructions in list form struggled with describing the non-

standard, three-dimensional game pieces. The lack of a shared 

vocabulary posed a challenge for description and caused 

confusion during execution. Several groups encountered 

complications when they used color descriptions of pieces in 

their instructions and later discovered that the colors of the 

pieces were not consistent across all game sets. 

 

One of the fastest instructions began by filling each row of the 

board with a specific color piece that would be the base for a 

cube. Next, a top piece that would complete a cube was chosen 

at random and visually matched to a base. Since the 16 base 

pieces had already been placed, this reduced the sorting 

problem in half. Additionally, as each cube consists of a 

different color base and top, the row corresponding to the color 

of the selected top piece could be eliminated. Another fast 

instruction set included a top-level drawing of the completed 

solution.  

 

Other instructions that took longer to solve used more detailed 

descriptions and matched a top and bottom to make the cube 

before placing them on the board. This seemed to work out well 

when small groups of game pieces could be identified by 

features such as a rounded edge or connection on a diagonal, 

but failed when it was more difficult to quickly describe 

commonalities between complex game pieces.   

 

After performing the gallery stroll, students thought that using a 

diagram of the solution was a best practice and noted that it was 

helpful to see what you are trying to make. Additionally, 

students recognized that finding similarities between pieces and 

trying to identify them was a strategy that did not work well.  

 

 

Theme Park Attraction Simulators 
Students were given the most time to work on this lesson, and 

their work showcased a significant amount of effort to first 

understand how the relatively complex attraction controls 

worked and then effectively document their operation. 

 

Dividing the student teams into pairs resulted in two positive 

effects.  First, with pairs, the groups developing the 

documentation were smaller and each member was fully 

involved in the process.  Second, unbeknownst to each other, 

the pairs were working on separate projects for their peers to 

implement.  Therefore, each pair got the opportunity to not only 

develop a flowchart and process for their teammates, but also to 

implement their classmates’ work. 

 

The teams that did best on the third lesson tended to remain the 

most focused on the task across the entire 25-minute span. In 

retrospect, it would have been better to allow students more 

time to complete this lesson. By allowing up to 40 minutes, the 

students would have the opportunity to take momentary breaks 

from the relatively intense time pressure that the simulator 

presents to the user. 

 

Post-Survey Results 
After completing the three lessons, students were given a post-

survey consisting of the following five questions scored on a 5-

point Likert-like scale: 

• I believe technical documentation is an important part of the 

design process.  (Figure 8, also in pre-survey) 

• Which is more important to you: Planning a solution or 

implementing a solution? (Figure 9, also in pre-survey) 

• I would like to know more about how to diagram a flow in a 

standardized way (i.e., UML, pseudocode, flowchart, etc.).  

(Figure 10) 

• This workshop helped me understand the larger challenges 

of design.  (Figure 11) 

• I would like to see more activities like this as a part of a 

regular class.  (Figure 12) 

 

The response distributions for the five questions are plotted in 

Figures 8–12. These responses show that the goal of motivating 

students to accept the idea that flow charts and technical 

documentation are important was successfully met. 
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Figure 8. Pre- and post-survey:  I believe technical 

documentation is an important part of the design process. 
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Figure 9. Pre- and post-survey: Which is more important to you: 

Planning a solution or implementing a solution? 
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Figure 10.  Post-survey only: I would like to know more about 

how to diagram a flow in a standardized way (i.e., UML, 

pseudocode, flowchart, etc.). 
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Figure 11. Post-survey only: This workshop helped me 

understand the larger challenges of design. 
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Figure 12. Post-survey only: I would like to see more activities 

like this as a part of a regular class. 

 

 

 

Discussion of Larger Learning Outcomes 
The three exercises encompass aspects of various problem 

spaces such as user interface design and programming 

languages. They also demonstrate the challenge in technical 

writing for an unknown audience. The certainty of a shared or at 

least easily grasped vocabulary eases the challenge of creating 

documentation for the Shape-O Toy. For the Superfection game 

and attraction simulators, the inability to use a simple 

vocabulary significantly raised the complexity challenge and 

demonstrated the increased likelihood of end-user confusion. 

These lessons demonstrate the risks that can occur when 

directions cannot be easily understood. Such failures to 

communicate clearly are frequent contributors to accidents, 

mishaps, and dangerous misuse. The use of color-based 

descriptions also provides the opportunity to discuss 

accessibility issues as important considerations in the design 

phase. 

 

The differences in task complexity across all three exercises can 

be used to discuss operational problems in the context of 

complete systems.  The whole exercise and the contrasts among 

the lessons serves as a way to introduce the vocabulary of 

processes and algorithms.  Asking students to identify measures 

and metrics and define success could be a follow-up activity or 

out of class assignment. Further discussion could also include 

questions of labeling steps for repetition (looping), how to 

handle questions (conditionals), and initial conditions 

(initialization). 

 

Additionally, we see value in these exercises beyond 

introductory programming courses. For example, the 

complexity of Superfection versus the simpler Shape-O Toy 

could be illustrate the comparison of CISC versus RISC devices 

in a computer architecture course. These exercises are also 

compelling for project-driven or capstone-style courses with a 

strong technical writing or documentation component.  
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4.  CLASSROM ASSESSMENT AND EVALUATION 

 

In this section, we discuss how the various modules were 

integrated in parts in two separate classes.  The Tupperware 

Shape-O Toy and Superfection game were used in a sophomore 

level Programming 1 course (ECE251) for electrical and 

computer engineering students.  The theme park attraction 

control simulators were used in a general engineering design 

elective (ECE490) populated primarily by sophomores 

and juniors and included students majoring in biomedical, civil, 

computer, electrical, and mechanical engineering. 

 

ECE251 / Programming 1 Implementation 
ECE251 is an introductory programming course designed for 

second year electrical engineering and computer engineering 

students. For many students, this course is an initial exposure to 

computer programming. ECE251 uses the C programming 

language to teach students the basics of memory, variable 

usage, program compilation and structured programming using 

functions. Upon completion, students are prepared for a second 

semester of object-oriented programming or a course in 

embedded microcontroller program design. 

 

As an introductory computer programming course, it is 

important for students to understand the basics of program 

design and need for careful planning. To motivate students to 

see the need for tools like flowcharts and pseudocode, a subset 

of the modules presented in this paper were administered to the 

students during a regular course meeting. 

 

The structure for this activity is shown in the table below. This 

lesson was administered by a single professor and one 

undergraduate student in two sections of ECE251. While each 

section meeting is 75 minutes, the activity was planned to last 

for approximately 50 minutes with a short lecture taking up the 

meeting balance. Students were divided into teams of two for 

this activity. 

 

Table 2.  Experimental Sequence for ECE251. 

Item 
Time 

(min.) 

Administrative items 

• Daily quiz 

• Announcements 

5 

Lecture on new material 15 

Shape-O Module 

• Understand toy, determine fastest solution 

• Write instructions 

10-15 

Professor and TA implement Shape-O instructions 

• Discussion of algorithm differences 
10 

Superfection Module 

• Understand toy, determine fastest solution 

• Write instructions 

10-15 

Discussion of  Shape-O and Superperfection 

instructions 
5 

Overall discussion on documentation 5-10 

TOTAL TIME 60-75 

 

 

This activity took place three weeks into a 15 week semester. 

Students were capable of writing basic programs (i.e., calculate 

the area of a triangle and print the result) but had not yet seen a 

need for a structured design tool. Along with this activity, 

students were given a homework assignment to produce a 

flowchart that outlines their process for printing the binary 

representation of a 32-bit number stored in memory. This was 

the students’ first assignment that asked for a flowchart (see 

Figures 12 and 13). 

 

 
Figure 12.  Example of ECE251 algorithm for printing a binary 

representation of a 32-bit number that meets expectations. 

 

 

 

 
Figure 13.  Example of ECE251 algorithm for printing a binary 

representation of a 32-bit number that is progressing toward 

expectations. 
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The impact of this activity was assessed in two ways. Student 

responses to surveys administered before and after the activity 

were assessed (see Figure 14). Second, student performance on 

their flowchart assignment was assessed by the professor (see 

Figure 15). 

 

 

 
Figure 14. Pre- and post-survey ECE251: Which is more 

important to you: Planning a solution or implementing a 

solution? 

 

 

 

 
Figure 15. Assessment of ECE251 flowchart assignment. 

 

 

Data from the assessment show that students recognized the 

need for planning complex tasks. Further, data from the 

flowchart assignment show that a large set of students were 

capable of creating documentation for a programming task with 

little previous guidance. This creates a strong starting point for 

continuing to practice design and documentation procedures 

regardless of specific discipline. 

 

This activity shows one example of how the modules presented 

in this paper function in a typical classroom setting. Data from 

the ECE251 course suggests that the modules are strongest 

when taken together. In this offering, students only saw a few 

examples of a professor implementing the Shape-O instructions 

and no examples of the Superperfection instructions. To make a 

strong impact, it is suggested to run a short 20 minute activity 

with the Shape-O toy on one day, a 20 minute activity with 

Superperfection the next day, and then culminate on day 3 with 

the theme park attraction simulators. 

 

ECE490 / Innovation in Engineering Design 
ECE490 is an engineering elective for all engineering majors.  It 

provides additional opportunities for students to engage in 

design by providing multiple short-term projects each focused 

on a specific step in the design process or various design tools.  

 

 

 

As outlined in Section 2, Lesson 3, ECE490 students were 

assigned the role of engineers at a theme park with the task of 

developing the documentation for operating an attraction in an 

efficient manner.  Again, the task is non-trivial as they must 

develop an algorithm using inputs from approximately 30 

asynchronous sensors and actuate 32 outputs to control the flow 

of guests and maximize the ride capacity.  In this lesson, 

however, the ECE490 students were given a week to learn how 

the simulator works and develop their flowchart.  Also, unlike 

the extracurricular implementation, a significant portion of the 

ECE490 students (biomedical, civil, and mechanical 

engineering students) have not had a Programming 1 course, 

and did not have a prior introduction to flowcharting.  The 

electrical and computer engineering students in ECE490 had 

completed a Programming 1 course, but had not yet been 

introduced to interrupt driven systems. 

 

The students performed admirably on the exercise, despite the 

majority lacking a strong background in flow charting or related 

processes. The additional time allowed the students to truly 

understand the intricacies of the simulator’s operation and 

develop, generally, very robust control algorithms.  They ranged 

from pseudocode descriptions (see Figure 16) to more detailed 

flow charts (see Figure 17), all the way to recognizing the need 

for an interrupt driven system (see Figure 18).  In all, 27% of 

the student work was classified as Progressing Toward 

Expectations, and 73% of the submissions were deemed to Meet 

or Exceed our expectations.  Additionally, the investment by the 

student teams in the assignment allowed for a much richer 

understanding of the control systems and provided a canvas for 

a much deeper, student-led discussion of optimizing a system’s 

flow.  

 

 
 

Figure 16.  Pseudocode description of student control algorithm 

for Tower of Terror theme park attraction. 
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Figure 17.  Excerpt of detailed flowchart of student control 

algorithm for Tower of Terror theme park attraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From an educator’s perspective, the most refreshing aspect of 

the inclusion of our lessons in the classes was that the students 

“got it.”  They able to demonstrate reasonable work toward 

developing system documentation and flowcharts.  Each group 

showed progress toward flowcharting maturity, and showed 

improvement in motivation and understanding of flowcharting 

and planning.  Even allowing for a subset of the three lessons in 

ECE251 and ECE490, each variation showed improvement 

even with the less immersed experience. 

 

Additionally, each group had some sort of outcome that was 

unexpected.  In ECE251, we had a “hook” that opened the door 

for the instructor to start a discussion of pseudocode and other 

planning tools.  In ECE490, submissions allowed us to 

introduce the concept of functions and subroutines for the 

repetition of activities and thinking about synchronous vs. 

asynchronous behavior.  Finally, following the submission of 

the student work, the documentation provided material for a 

thorough, thoughtful conversation into best practices and areas 

for improvement. 

 

 

5.  CONCLUSION 

 
We have presented a series of active learning lessons to show 

development tools and problem solving as vital components of 

an overall solution. These lessons motivate students to see the 

value of such tools through immediate, practical applications. 

Assessment of pre- and post-lesson surveys indicate that our 

students, after participating in these exercises, are not only 

motivated to use suitable tools and planning in their coding 

projects, but are also interested in learning more about standard 

documentation and planning tools. In future work, we will 

continue refining our modules and further study their role 

within the curricula. 
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Figure 18.  Detailed flowchart of interrupt driven student control algorithm for Tower of Terror theme park attraction.
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