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ABSTRACT 
 
Parabolic partial differential equations with nonlocal boundary 
conditions arise in modeling of a wide range of important 
application areas such as chemical diffusion, thermoelasticity, 
heat conduction process, control theory and medicine science. 
In this paper, we present the implementation of positivity-
preserving Padé numerical schemes to the two-dimensional 
diffusion equation with nonlocal time dependent boundary 
condition. We successfully implemented these numerical 
schemes for both Homogeneous and Inhomogeneous cases. The 
numerical results show that these Padé approximation based 
numerical schemes are quite accurate and easily implemented. 
 

 
 

1. INTRODUCTION 
 
The two-dimensional parabolic partial differential equations 
with nonlocal boundary conditions arise in many important 
applications in sciences [4,5,7,8,12]. In recent years, a number 
of numerical techniques for solving two-dimensional parabolic 
partial differential equations with nonlocal boundary conditions 
have been studied [10, 11, 15]. 
In this paper, we consider the implementation of positivity-
preserving Padé schemes for two dimensional diffusion 
equations with nonlocal boundary conditions. 
(0, 2 1)m   Padé schemes are known as positivity-preserving 
Padé schemes. The name “Positivity-Preserving Padé” was 
given by Wade et al. [13]. The positivity-preserving Padé 
schemes are relatively a new research area; they have captured 
the interest of mathematicians and scientists. In the past few 
years, much attention has been devoted to the development of 
positivity-preserving schemes. The concept of positivity has 
emerged prominently because it has been found to be an 
important factor in controlling spurious oscillations.  
The outline of this paper is as follows: In section 2 we will give 
a brief review of Padé approximants. In section 3 we will 
discuss the positivity-preserving Padé schemes.  In section 4 we 
present numerical experiments. Concluding remarks are given 
in section 5. 
 
 

2. PADE` APPROXIMANTS 
 
Padé approximants are generalizations to power series 
approximations. If ( )nP x  and ( )mQ x  are polynomials of  
 
 

degree n  and m respectively, then “ ( )
( )

n

m

P x
Q x

is a Padé 

approximation of a function ( )f x ” means that  
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Let ( )f z  be analytic in a region of the complex plane 

containing the origin 0.z   A Padé approximation , ( )n mR z  

to the function ( )f z  is defined by 

,
( )( )
( )

 n
n m

m

P zR z
Q z

                                                               (2.5) 

where ( )nP x  and ( )mQ x  are polynomials in z of degree n  
and m  respectively with leading coefficients unity. For each 

pair of non-negative integers n  and m , ( )nP x  and ( )mQ x  
are those polynomials for which the Taylor series expansion of 

, ( )n mR z  about the origin agrees with the Taylor series 

expansion of ( )f z  for as many terms as possible. Since the 
ratio contains essentially ( 1)n m   unknown coefficients, 
the requirement that 

1( ) ( ) ( ) ( ), 0   n m
m nQ z f z P z O z z  gives rise to 

( 1)n m   linear equations for these coefficients. 
In the present work, we utilized ( , ) n m Padé approximations 

for ze  following  [36, 37]. In [38], the Padé approximant 

, ( )n mR z to the exponential function ( ) zf z e is defined as 

follows:  Let 
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satisfying 
1

, ( ) ( )
n mz

n mR z e O z
            as  0z  , 

We will call , ( )n mR z  as ( , )n m  Padé scheme of order 

( ).n m  
 

3. POSITIVITY-PRESERVING PADE` SCHEMES 
 
The positivity-preserving schemes are relatively a new research 
area; they have captured the interest of mathematicians and 
scientists. The notion of a positive scheme was introduced as a 
refinement of 0L - stability. A positive scheme has a positive 
symbol on the positive real axis and is monotonically 
decreasing to 0. In the past few years, much more attention has 
been devoted to the development of positivity preserving 
schemes and the concept of positivity has come out prominently 
because it has been found to be an important factor in 
controlling spurious oscillations. Wade et al. [13] has discussed 
many application problems, taken from the literature, reflecting 
the importance of positivity-preserving schemes and concluded 
the increasing interest of researchers in the development and 
application of positivity-preserving related work. Wade et al. 
[13, 14] and Siddique [25] have used the positivity preserving 
Padé schemes to construct smoothing schemes for parabolic 
partial differential equations 
 
Definition 3.1: A numerical scheme is called positivity 
preserving if the graph of its stability function stays above x-
axis and converges to zero monotonically. The 
(0, 2 1)m   Padé schemes are positivity-preserving schemes 
where 0,1,2, m . (0,1)  Padé, (0,3)  Padé, 

(0,5)  Padé, etc are all positivity-preserving Padé` schemes. 
The graphs of amplification symbols of (0,1)  Padé, 

(0,3)  Padé, (0,5)  Padé are shown in Figure 1. 
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Figure 1. Positivity preserving Padé` 

 
(1,1)  Padé, (1,2)  Padé and (2,2)  Padé are nonpositivity-
preserving Padé. The graphs of amplification symbols of 

(1,1)  Padé, (1,2)  Padé and (2,2)  Padé are shown in 
Figure 2.   
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Figure 2. Non-positivity preserving Padé 

  
The ( , )n m  Padé approximation of kAe  is approximated by 

1
,{ ( )} ( ) ( ),   kA

m n n me Q kA P kA R kA                             (3.1) 

where k  is the time step.  

Approximating the matrix exponential kAe  by (0,1)  Padé, 

denoted by 0,1( )R kA  to give 
1

1 ( )  n nv I kA v                                                  (3.2) 
which is the backward Euler’s method. 

(0,3)  Padé approximation to the matrix exponential kAe  is 

given by     1
2 2 3 3

1
1 1
2 6



    n nv I kA k A k A v                 (3.3) 

(0,5)  Padé approximation to the matrix exponential  

 kAe  is given by  

  1
2 2 3 3 4 4 5 5

1
1 1 1 1
2 6 24 120



      n nv I kA k A k A k A k A v (3.4)                                                                                                 

The matrix A is a tridiagonal matrix. The number of diagonals 

of A increases with the powers of A. For example 2A  is a five 

diagonal matrix, 3A  is seven and 4A  is a nine diagonal matrix 
and so ill-cnditioning of the matrix A comes into picture.   
 
Definition 3.2:  The condition number of a matrix A denoted by 

( )cond A and is defined by 
1( ) .cond A A A                  (3.5) 

The condition number of a matrix measures the sensitivity of 
the solution of a system of linear equations to errors in the data. 
It gives an indication of the accuracy of the results from matrix 
inversion and the linear equations solutions. This can also cause 
computational difficulties and make the schemes 
computationally less efficient.  
Partial fraction decomposition is a very useful technique to 
rewrite a rational function in simple terms.  Gallopoulos and 
Saad [28] used (m, m) – Padé (diagonal Padé) and constructed 
parallel algorithms using the factorizations. Khaliq et al. [30] 
discussed diagonal and subdiagonal Padé approximations in 
factored and partial fraction forms. They have used the partial 
fraction forms of diagonal and subdiagonal Padé 
approximations to construct following efficient parallel 
algorithm.   
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Algorithm: (Homogeneous Case) 
 
Step 1. For 1 21, 2, , ,i q q   solve ( )i i skA c I v v    in 
parallel. 
Step 2. Compute 

                  
1 1 2

1
1

1 1
2 Re( )

q q q

n i i i i
i i q

v w v w v



  

    

We have used this algorithm for the implementation of our Padé 
schemes. Maple is used to compute the poles and weights of 
Padé approximants. The poles and weights for (0,3)  Padé are 
as follows: 

1 1

2

2

1.5960716379833, 1.475686517795720,
0.7019641810083 1.807339494452
0.7378432588979 0.365017840801

  
  
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c w
c i
w i

 

For (0,3)  Padé, we have 1 2 1q q   and the algorithm 
solve 

1 1( ) skA c I y v   and 2 2( ) skA c I y v    
and compute 

1 1 1 2 22 Re( )sv w y w y     for 0,1,2,s   .  
 
Algorithm: (Inhomogeneous Case) 
 
Step 1. For 1 21, 2, , ,i q q   solve 

1
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m
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j

kA c I y w v kw f t k
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We have used this algorithm for the implementation of our 
Pade` schemes. Poles and weights of Padé approximants are 
computed by using Maple. For (0,3)  Padé, we have 

1 2 1q q  . The poles and weights for (0,3)  Padé are as 
follows:  
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and the algorithm looks like 
        1 1 22 Resv y y     for 0,1,2,s   . 
where 

1 1 1 11 1 12 2( ) ( ) ( )s s skA c I y w v kw f t k kw f t k         
and 

2 2 2 21 1 22 2( ) ( ) ( )s s skA c I y w v kw f t k kw f t k        
For the numerical experiments, we have implemented first and 
third order positivity-preserving schemes. 
 
 

4. NUMERICAL EXPERIMENTS 
 
In this section we present the performance of positivity 
preserving Padé schemes by implementing these schemes  to 
solve three problems from literature. Twizell et al. [15], Ishak 
[16] and many others considered these problems as test 
problems. We have considered both homogeneous and 
inhomogeneous problems. All positivity-preserving Padé 
schemes are implemented by using partial fraction 
decomposition techniques described earlier. We present graphs 
of the exact and numerical solutions for different parameter 
values.  
 
Problem 1 (Twizell et al. [15] and Ishak [16] ) 
We consider the diffusion equation in two space variables, that 
is given by 

 
2 2

2 2 ; 0 , 1, 0
 
  
 

      
  
u u u x y t
t x y

  

in which ( , , )u u x y t , with Dirichlet time-dependent 
boundary conditions on the boundary  of the square 
 defined by the lines 0, 0, 1, 1x y x y    , given 
by 

( 2 )

(1 2 )

( 2 )

(1 2 )

(0, , ) , 0 , 0 1,
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( ,0, ) , 0 , 0 1,
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

 



 
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    

    

y t

y t

x t

x t

u y t e t T y
u y t e t T y
u x t e t T x
u x t e t T x

 

and nonlocal boundary condition 

              
1 1 2 2

0 0
( , , ) 1 tu x y t dxdy e e    

with initial conditions  ( )( , , 0) x yu x y e  . Theoretical 

solution is given by ( 2 )( , , ) x y tu x y t e   . 
 

Table 1. Exact and Num. Sol.  for (0, 1) –  Padé 
 

x y Num. Sol Ext. Sol. Errors 
0.0 0.0 7.38905610 7.38905610 0.0000e+000 
0.1 0.1 9.04041689 9.02501350 1.7038e-003 
0.2 0.2 11.06951484 11.02317638 4.1861e-003 
0.3 0.3 13.54531347 13.46373804 6.0224e-003 
0.4 0.4 16.55780082 16.44464677 6.8339e-003 
0.5 0.5 20.21997846 20.08553692 6.6489e-003 
0.6 0.6 24.67258833 24.53253020 5.6767e-003 
0.7 0.7 30.09034598 29.96410005 4.1956e-003 
0.8 0.8 36.69004490 36.59823444 2.5023e-003 
0.9 0.9 44.74237856 44.70118449 9.2069e-004 
1.0 1.0 54.59815003 54.59815003 0.0000e+000 
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Figure 3. Graph of (0, 1) – Padé 
 
Table 1 and Figure 3 show the numerical and exact solution for 
Padé (0, 1), whereas the corresponding Padé (0, 3) results are 
shown in Table 2 and Figure 4.  
 

Table 2. Exact and Num. Sol.  for (0, 3) – Padé 
 

 

 
Figure 4. Graph of (0, 3) – Padé 

 
Problem 2. (Ishak [16]) 
Consider the two-dimensional diffusion problem 
 

2 2

2 2 ; 0 , 1, 0
   

         

u u u x y t
t x y

 

        

subject to the initial condition 
                            ( , ,0) (1 ) , 0 1, 0 1     xu x y y e x y
               
and the boundary conditions  

1

(0, , ) (1 ) , 0 1, 0 1,

(1, , ) (1 ) , 0 1, 0 1,

( ,0, ) , 0 1, 0 1,
( ,1, ) 0, 0 1, 0 1,




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t

t

x t

u y t y e t y

u y t y e t y

u x t e t x
u x t t x

                          
and nonlocal boundary condition 
 
                            

1 (1 )

0 0
( , , ) 2(11 4 ) , 0 1, 0 1.


      

x x tu x y t dxdy e e x y

            
The exact solution is given by ( , , ) (1 )   x tu x y t y e  
                        

Table 3. Exact and Num. Sol.  for (0, 1) – Padé 
 

 
 

Table4. Exact and Num. Sol.  for (0, 3) – Padé 
 
x y Num. Sol Ext. Sol. Errors 
0.0 0.0 2.71828183 2.71828183    0.0000e+000 
0.1 0.1 2.70355558 2.70374942 1.9384e-004 
0.2 0.2 2.65617813 2.65609354 8.4596e-005 
0.3 0.3 2.56868615 2.56850767 1.7849e-004 
0.4 0.4 2.43330126 2.43311998 1.8128e-004 
0.5 0.5 2.24100360 2.24084454 1.5906e-004 
0.6 0.6 1.98134861 1.98121297 1.3564e-004 
0.7 0.7 1.64228952 1.64218422 1.0530e-004 
0.8 0.8 1.20998105 1.20992949 5.1554e-005 
0.9 0.9 0.66857060 0.66858944 1.8847e-005 
1.0 1.0 0.00000000 0.0000e+000 0.0000e+000 
 
 
 

x y Num. Sol Ext. Sol. Errors 
0.0 0.0 7.38905610 7.38905610 0.0000e+000 
0.1 0.1 9.02278044 9.02501350 2.4749e-004 
0.2 0.2 11.02453679 11.02317638 1.2340e-004 
0.3 0.3 13.46680327 13.46373804 2.2761e-004 
0.4 0.4 16.44870004 16.44464677 2.4642e-004 
0.5 0.5 20.09092511 20.08553692 2.6819e-004 
0.6 0.6 24.53979277 24.53253020 2.9595e-004 
0.7 0.7 29.97228128 29.96410005 2.7296e-004 
0.8 0.8 36.60187800 36.59823444 9.9545e-005 
0.9 0.9 44.68687430 44.70118449 3.2023e-004 
1.0 1.0 54.59815003 54.59815003 0.0000e+000 

X y Num. Sol Ext. Sol. Errors 
0.0 0.0 2.71828183 2.71828183     0.0000e+000 
0.1 0.1 2.63778350 2.70374942 2.4274e-002 
0.2 0.2 2.59254212 2.65609354 2.2808e-002 
0.3 0.3 2.50819548 2.56850767 2.1110e-002 
0.4 0.4 2.37679262 2.43311998 1.9229e-002 
0.5 0.5 2.18935112 2.24084454 1.7144e-002 
0.6 0.6 1.93566543 1.98121297 1.4790e-002 
0.7 0.7 1.60411458 1.64218422 1.2057e-002 
0.8 0.8 1.18144246 1.20992949 8.7990e-003 
0.9 0.9 0.65250663 0.66858944 4.8449e-003 
1.0 1.0 0.00000000 0.0000e+000 0.0000e+000 
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Figure 5. Graph of (0, 1) – Padé 
 
 
 

 
Figure 6. Graph of (0, 3) – Padé 

 
 
 
 
 
Problem 3. Consider the two-dimensional nonhomogeneous 
diffusion problem  
                               

2 2
2 2

2 2 ( 4) ; 0 , 1, 0 
  
 

         
  

tu u u e x y x y t
t x y

    

The problem has nonsmooth data with the initial condition 
2 2(0, , ) 1u x y x y    and the 

boundary conditions  
2

2

2

2

(0, , ) 1 , 0 1, 0 1,
(1, , ) 1 (1 ) , 0 1, 0 1,
( ,0, ) 1 , 0 1, 0 1,
( ,1, ) 1 (1 ) , 0 1, 0 1,









     

      

     

      

t

t

t

t

u y t y e t y
u y t y e t y
u x t x e t x
u x t x e t x

 

and nonlocal boundary condition 

                                       
2
3

1 1

0 0
( , , ) 1 , 0 1, 0 1       tu x y t dxdy e x y  

The exact solution is 2 2( , , ) 1 ( )tu t x y e x y   . Table 3 
and Figure 5 shows the numerical and exact solutions using 
Padé (0, 1), and the corresponding Padé (0, 3) results are shown 
in Table 4 and Figure 6. 
 

Table 5. Exact and Num. Sol.  using (0, 1) –  Padé 
 

x y Num. Sol Ext. Sol. Errors 
0.0 0.0 1.00000000        1.00000000     0.0000e+000 
0.1 0.1 1.00738402        1.00735759     2.6235e-005 
0.2 0.2 1.02953533        1.02943036 1.0196e-004 
0.3 0.3 1.06645182        1.06621830     2.1897e-004 
0.4 0.4 1.11813036        1.11772142     3.6573e-004 
0.5 0.5 1.18456735        1.18393972     5.2983e-004 
0.6 0.6 1.26575934        1.26487320     7.0009e-004 
0.7 0.7 1.36170370        1.36052185     8.6792e-004 
0.8 0.8 1.47239930        1.47088568     1.0280e-003 
0.9 0.9 1.59784805        1.59596469     1.1787e-003 
1.0 1.0 1.73575888        1.73575888   0.0000e+000 

 
 

Figure 7. Graph of (0, 1) – Padé 
 

Table 6. Exact and Num. Sol.  for diffusion problem using  
(0, 3) – Padé 

 
x y Num. Sol Ext. Sol. Errors 
0.0 0.0 1.00000000 1.00000000 0.0000e+000 
0.1 0.1 1.00735759 1.00735759 1.7413e-009 
0.2 0.2 1.02943035 1.02943036 4.6097e-009 
0.3 0.3 1.06621829 1.06621830 1.0956e-008 
0.4 0.4 1.11772141 1.11772142 1.2258e-008 
0.5 0.5 1.18393971 1.18393972 1.1614e-008 
0.6 0.6 1.26487319 1.26487320 8.7720e-009 
0.7 0.7 1.36052188 1.36052185 1.9439e-008 
0.8 0.8 1.47088594 1.47088568 1.7066e-007 
0.9 0.9 1.59596524 1.59596469 3.4276e-007 
1.0 1.0 1.73575888 1.73575888 0.0000e+000 
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Figure 8. Graph of (0, 3) – Padé 

 
 

5. CONCLUSIONS 
In this work, we presented the positivity-preserving Padé 
numerical schemes and implementation of these schemes on 
two dimensional diffusion equations with nonlocal boundary 
conditions on four boundaries. We considered two test 
problems taken from the literature. To verify the accuracy of 
these schemes, the absolute relative errors between the exact 
and numerical solutions are computed. Numerical results show 
that these schemes are efficient and provide very accurate 
results. 
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