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ABSTRACT 

 
Grinding, embossing, burnishing, thread rolling, drawing, 
cutting, turning are very complicated technological processes. 
To increase the quality of the product and minimize the cost of 
process, we should know the physical phenomena which exist 
during the process. The phenomena on a typical incremental 
step were described using a step-by-step incremental procedure, 
with an updated Lagrange’s formulation. The technological 
processes are considered as geometrical and physical non-linear 
initial and boundary problems. The finite element method 
(FEM) and the dynamic explicit method (DEM) were used to 
obtain the solution. The application was developed in the 
ANSYS/LS-DYNA system, which makes possible a complex 
time analysis of the physical phenomena: states of 
displacements, strains and stresses. Numerical computations of 
the strain and stress have been conducted with the use of 
methodology which requires a proper definition of the contact 
zone, without the necessity to introduce boundary conditions. 
Examples of calculations are presented. 

 
Keywords: Technological Processes, Updated Lagrangian 
Formulation, FEM, DEM, Numerical Modeling, Numerical 
Simulation, Geometrical Contact Conditions.  

 
1.  INTRODUCTION 

 
The technological processes as grinding, embossing, burnishing, 
thread rolling, drawing, cutting are very complicated. To 
increase the quality of the product and minimize the cost of 
process, we should know the physical phenomena which exist 
during the process. This paper presents the modeling and 
simulation of a contact problem in the operation of 
technological production of objects. The processes are 
considered as a geometrical and physical non-linear initial and 
boundary value problems. The mathematical model on a typical 
incremental step time were described using step-by-step 
procedure, with updated J.L. Lagrange’s formulation [1]. A new 
incremental material model of elastic (domain reversible) and 
visco-plastic (domain non-reversible) with mixed hardening, 
including high strain rates and geometrical and physical 
nonlinearities is used. The model takes into account the history 
of deformation. The identification of constitutive parameters in 
the model of yield stress is made using unidirectional test on the 
studied different materials. An incremental model of the contact 
problem for movable elasto/visco-plastic body for spatial states 
(3D) is being considered. Geometrical contact conditions (GCC) 
for the case of a deformed object and a rigid or elastic tool, with 
a rotation and translation of the bodies are introduced. A GCC 
form used in numeric calculations is determined. Dependences 
between increments of unit forces in the contact area of bodies 
is introduced. Basic incremental equations of the edge 
displacement in the reversible and non reversible zone are 
defined. The description of a geometrical contact conditions and 
friction conditions in the ranges of stick-slip are considered. The 
models obtained are used to a variational formulation of 
equation of motion and deformation in three dimensions for this 
case. Then, the finite element method (FEM) and dynamic 

explicit method (DEM) were used to obtain the solution. The 
procedure has been implemented in the finite element computer 
program ANSYS, which makes possible a complex time 
analysis of the physical phenomena: states of displacements, 
strains and stresses. Numerical computations of the strain have 
been conducted with the use of methodology  – a proper 
definition of the contact zone, without the necessity to introduce 
boundary conditions. Examples of numerical analysis of contact 
bodies (tool-object) in different technological operations as 
grinding and thread rolling processes are shown. The influence 
of the a single abrasive grain geometry and the cutting angle on 
the states of strain and stress in the surface layer during 
machining is explained. Examples of simulation of the influence 
a various thread rolling process conditions on the states of strain 
and stress, were presented.  

 
2.  MATHEMATICAL MODEL OF PROCESS 

 
A mathematical model of the technological processes is 
formulated in increments and contains the following: a material 
model, a contact model, an equation of motion and deformation, 
with initial and boundary conditions. 

 
Material model 

Yield stress: Yield stress σy is the most important 
parameter characterizing the resistance of a visco-plastic 
deformation. The incremental model of the yield stress for a 
typical step time ttt ∆+=τ→  was defined as [2]: 
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Elastic/visco-plastic material model: A new model of 
mixed hardening for isotropic material which includes the 
combined effects of elasticity (reversible domain), visco-
plasticity (non-reversible domain) (E/VP) is used. The model 
takes into account the history of the material. 
The constitutive equation of increment components of a total 
strain tensor takes form: 
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is a component of a stress tensor,  

 (VP)
e(VP)

e

Y
Y ε∆

ε

σ
σA

3

2
&

&
⋅

∂
∂

⋅= ⋅  (6) 

is a positive scalar variable, ijσ∆  is the increment component of 
the second Piola-Kirchhoff stress tensor, (E)

ijklD  are the 
components of tensor 1(E)(E) ][ −= CD  in time t, ij∆ε  is the 
increment component of Green-Lagrange strain tensor, (E)

ijklC  are 
the components of elastic constitutive tensor (E)C . 
 
Model of contact tool-object 
The qualification of the area real shape of the bodies’ contact 
zones is combined with the determination in these areas of the 
states of loading mechanics (pressures and forces of friction) and 
the state of the deformation of the object material, and the 
opposite. In practical considerations, these states are uncoupled in 
the way that the first one determines the shape and the field of the 
contact point area of bodies and then loads the result for these 
conditions. The above case of the contact problem has an 
essential meaning: the contact forces, contact stiffness, shape and 
field of the contact area of bodies, contact boundary conditions 
and friction conditions in this area. 
 

Forces in the contact zones: In the time increment ∆t 
increment of unit force Np∆  acted in a perpendicular direction 

to the contact surface, however increments of unit forces 
increments of unit forces Tjp∆  and Tjt∆ , j=1,2 are tangential to 

this surface.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure1: Increments of unit forces in any point of contact zone 

 
From Fig. 1, the following dependences result among 
increments of unit forces: 

 ,2T1TT ttt ∆+∆=∆   

 ,2T1TT ppp ∆+∆=∆   

 ,TN ppp ∆+∆=∆   

 ,TT2T1TT ptqqq ∆+∆=∆+∆=∆   

 ,TNT tppqq ∆+∆=∆+∆=∆  (7) 

where ∆q is the increment of the resultant unit force with 
components iq∆ , 31i ÷= . 

The components of increment forces Tjp∆  and Tjt∆  add up 
yielding components Tjq∆  of resulting force Tq∆ , acting 
tangential to the surface of contact: 

 .2,1j,tpq TjTjTj =∆±∆=∆  (8) 

Contact stiffness: Contact forces cause the 
displacement of the edge of bodies in contact. The value of this 
displacement is dependent of the contact stiffness, which is 
defined by the relation of acting force onto the surface to the 
value of the displacement surface of the contact in the direction 
of the force working.  

Contact stiffness occurs in the normal and tangential directions. 
Dependence of unit force-displacement ( ii up − ) can be 
introduced with the help of two lines (Fig. 2). The first one 
concerns the range of the linear reversible displacement to yield 
stress y

ip  (range E), however the second one – the non-linear 
non-reversible displacement (range VP). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: ii up −  diagram for contact tool-object 

 
An increment of the resulting displacement in the direction i, at 
a typical time increment, is calculated with the use of the 
following equation: 
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where )E(
iu∆  is the increment of an elastic displacement, *i∆u  

is the increment of a visco-plastic displacement.  
From ii up −  diagram, we obtain: 

 ,∆uk∆p (E)
i

(E)
ii ⋅=   

 ,∆uk∆p i
(VP)
ii ⋅=  (10) 

where (E)
ik  and )VP(

ik  are temporary stiffness coefficients in 
direction i, for range E and VP respectively. This coefficients 
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where (E)
iu  is the accumulated component of elastic 

displacement, ip  is the accumulated component of the normal 
unit force at time t. 

From Eqs. (10) and (11) we obtain the relations between the 
increment of resulting displacement iu∆  and the increment of 
pressure ip∆ : 
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It results from relationships Eq. (12) that the increment of the 
resulting unit force is the function of the increment of the edge 
displacement. The qualification of these relationships demands 
the knowledge of experimental curve ii up − , for real 
conditions of the contact. It is often very difficult to realize the 
determination of such dependence, or it is unfeasible. In the 
present paper, this difficulty is eliminated by a variational 
formulation of movement equations and the use of iterative 
methods of solution. Assuming that the state of the increment of 
the pressure and frictions’ force is known from the previous 
iteration, temporary coefficients of contact stiffness (E)

ik  and 
(VP)
ik  and dependence ii up −  are determined analytically. 

Boundary conditions in the contact zone: The 
geometrical condition of the contact defines current distance g 
between points on the edge of bodies along the normal 
direction, i.e. perpendicular to the tangential plane to both 
bodies (Fig. 3). A geometrical condition of the contact will 
become formulated in increments in a general form, i.e. for 
spatial states, at foundation, that both objects, as the tools 
undergo translation and turn, at which tool have much larger 
stiffness in comparison with the object. The bodies remain 
under influence of forces and moments. 

Temporary distance τg(z,t) the edge of the object from the active 
surface of the tool, in a normal direction, following the 
dependence between the component vectors: 

 0,∆t)(z;∆u∆t)(z;∆u∆Kt)g(z;τ)g(z; (t)
3

(o)
3

o)(t,tτ ≥−−+=  (13) 

where o)(t,
∆K  is a total influence of the translation increment and 

rotations of tools and the object onto the displacement increment 
of the object’s edge ∆t)(z;∆u(o)

3  and tool ∆t)(z;∆u(t)
3 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Illustration of geometrical conditions of contact 
 

From condition Eq. (13), there result the following cases: 
a) if 0)(gand0)(g t >⋅>⋅τ  then the point in question lies 

beyond area of contact, 

b) if 0)(gand0)(g t >⋅=⋅τ  then in the considered point a 
contact followed, 

c)  if 0)(gand0)(g t =⋅=⋅τ  then considered point in area of 
contact still stays in it, 

d) if 0)(gand0)(g t =⋅>⋅τ  then in the considered point a loss 
of contact occurred. 

Condition Eq. (13) is used in numerical calculations. The 
application of an iterative procedure defines the displacement 
conditions in the contact area. Then, it takes root in the iteration 
process, that distance 0)(g =⋅τ  and 0)(gt =⋅  (functions are 
known from foundation), increment of displacement of tool 
edge )o(

3u∆  as a result of deformation is known from previous 
iteration, however it seeks itself an increment of the edge 
displacement of object )t(

3u∆ , from transformed Eq. (13) to 
form: 
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Boundary conditions for displacement Eq. (14) are applied in 
numerical analysis of the contact problem in consideration. 
 
Incremental model of motion and deformation 

Variational formulation: The equation of motion 
and deformation of the object is developed in the updated 
Lagrange’s formulation. Assuming that numerical solutions are 
obtained at discrete time t, the solution for time tt ∆+  is to be 
obtained. At this case a functional increment is formulated for 
increment displacement )(]u,u,u[ iii ⋅∆=∆∆∆∆ FF &&& , where ,ui∆  

,ui&∆  iu&&∆  are the ith increment components of the 
displacement, velocity and acceleration vectors, respectively. 
Using the conditions of stationary of functional )(⋅∆F , we 
obtain a variational equation of motion and deformation: 

dV)u(rdV)()T(
2

1

dV)~()T(
2

1
dV)(C

dV)~(CdV)(C~

dV)~(C~dV)(C)(
2

1

dV~C)(
2

1
dVC)~(

2

1

dV~C)~(
2

1
dV)(C

2

1

dV)~(C
2

1
dV)(C~

2

1

dV)~(C~
2

1
dV)u(u2

dV)u(udV)u()uu()]([

iijiji

Vt

2
kl

Vt

**
ijij

kl

Vt

**
ijijkl

Vt

*)TE(
ijklij

kl

Vt

*)TE(
ijklijkl

Vt

*)E(
ijklij

kl

Vt

*)E(
ijklijkl

Vt

)E(
ijklkl

kl

Vt

)E(
ijklklkl

Vt

)E(
ijklkl

kl

Vt

)E(
ijklklkl

Vt

)E(
ijklij

kl

Vt

)E(
ijklijkl

Vt

)E(
ijklij

kl

Vt

)E(
ijklijjiji

Vt

ii

Vt
iii

Vt

⋅∆δ⋅Ω⋅Ω⋅⋅ρ⋅ω−⋅ε∆δ⋅σ∆+⋅+

⋅ε∆δ⋅σ∆+⋅+⋅ε∆δ⋅⋅ε∆+

⋅ε∆δ⋅⋅ε∆+⋅ε∆δ⋅⋅ε∆+

⋅ε∆δ⋅⋅ε∆+⋅ε∆δ⋅⋅ε∆δ⋅β⋅+

⋅ε∆⋅⋅ε∆δ⋅β⋅+⋅ε∆⋅⋅ε∆δβ⋅+

⋅ε∆⋅⋅ε∆δ⋅β⋅+⋅ε∆δ⋅⋅ε∆⋅β⋅+

⋅ε∆δ⋅⋅ε∆⋅β⋅+⋅ε∆δ⋅⋅ε∆⋅β⋅+

⋅ε∆δ⋅⋅ε∆⋅β⋅+⋅∆δ⋅Ω⋅∆⋅ρ⋅ω−

⋅∆δ⋅∆⋅ρ⋅α+⋅∆δ⋅∆+⋅ρ=⋅∆δ

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

∫∫

&

&&

&&

&&

&&

&&&&&F

,0d)u()q̂q̂(dV)u()ff( ki

k
t

iiiii

Vt

=Σ⋅∆δ⋅∆+−⋅∆δ⋅∆+⋅ρ− ∫∫
∑

 (15) 

where ijT  is the component of Cauchy’s stress tensor, α and β 
are constants (to be determined from two given damping ratios 
that correspond to two unequal frequencies of vibration), 

ijε∆& , ij
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Green-Lagrange’s strain rate tensor, )uu(5,0 i,jj,iij ∆+∆⋅=ε∆  
and )uu(5,0~

k,jk,iij ∆⋅∆⋅=ε∆  are the linear and non-linear 
increments components of Green-Lagrange’s strain tensor, 
respectively, ρ is the mass density at time t, ijε  is a 
accumulated component of total strain tensor at time t (depend 
on the history of deformation), ii f,f ∆  are the components of 
the internal force and increment force vectors, respectively, 

ii q,q ∆  are the components of the externally applied surface 
force and surface increment force vectors in the contact body 
zones, respectively, Ωij is the component of the gyro tensor. The 
integrations are performed over the volume V and surface Σ of 
the body, respectively. 

Implementation of the finite elements method: 
Assume that the complete body under consideration has been 
idealized as an assemblage of finite elements, we have, at 
typical step time ttt ∆+=τ→  for element e, in the local 
coordinate {x}: 
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where )e()e()e( ,, www &&& ∆∆∆  are increments vectors of 
displacement, velocity and acceleration in the all W(e) nodal 
points of element e, respectively, )e(w∆  is the matrix of 
displacements increments, the )e(N  is displacement 
interpolation matrix, )e(B , )e(~

B  are linear and non-linear 
incremental strain - incremental displacement transformation 
matrices, )e(S  now define the incremental stress within element 
e as a function of the nodal point incremental displacement. 

The variations in the Eq. (15) in the local Cartesian coordinate 
{ x} is: 
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Using the Eqs. (16) and (17) and substituting into the variational 
Eq. (15), we obtain the discretized equations of motion for an 
assemblage of elements in the global coordinate {z}: 
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)e(
1A is the transformation matrix to relate the basis of local 

system {x} and global system {z}, )e(
2A  is the Boole’s matrix 

(logic matrix), )e(w∆  is the nodal point increment displacement 
vector of element e in the local coordinate {x}, r∆  is the nodal 
point increment displacement vector of system in the global 
coordinate {z}, N is the number of all nodal points of system.  
Introduced the following notation: 
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we can write the Eq. (18) in the form: 

 TTTT )( FFRrKKrCrM +∆+∆=∆⋅∆++∆⋅+∆⋅ &&&  (21) 

where mass matrix M , damping matrix TC , stiffness matrix 

TK  and external and internal force vector TF  are known at 
time t. However, increment stiffness matrix TK∆ , external 
incremental load vector R∆ , internal incremental forces vector 

F∆ , incremental vectors of displacement r∆ , velocity r&∆  and 
acceleration r&&∆  of finite element assembly at a typical step 
time are not known. In order to solve this problem we apply the 
integration methods - central difference method (DEM), which 
it is one of methods of direct integration the Eq. (21). 

 
3.  DEM SOLUTION 

 
Assuming that an increment of temporary step ∆t is very small, 
it is possible to execute a linearization of Eq. (21) and using the 
incremental decomposition we obtain an equation for time t: 
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Then using the central difference method (DEM), in which it is 
assumed that: 

 
t2

tttt
t

∆⋅
−=

∆−∆+ rr
r& ,    

2

ttttt
t

t

2

∆
+⋅−=

∆−∆+ rrr
r&&  (23) 

and substituting the Eqs. (23) into Eq. (22) we obtain: 
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is effective loads. 

The integration method requires that the time step ∆t is smaller 
than critical value ∆tkr, which can be calculated from the mass 
and stiffness properties of the complete element assemblage: 

,/Ttt Nkr π=∆≤∆  where TN is the smallest period of the finite 
element assemblage with N degrees of freedom. 
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4.  RESULTS OF NUMERICAL CALCULATIONS 
 

Rolling process of the round thread [3] 
The main aim of the simulation was to define the influence of 
friction coefficient on the state of deformation (displacements 
and strain) and stress in the surface layer of the object. The 
numerical analysis for 2D states of deformation and 3D states of 
stress was applied on the example of steel C55. The tool is 
considered as rigid ∞→E  or elastic body, however the 
material model as an elsto/visco-plastic body with non-linear 
hardening. The model has discretized by finite element 
PLANE183 with non-linear function of the shape. The contact 
tool with work pieces was modeling by elements TARGE169 
and CONTA171.  

Exemplary results of the numerical simulation are present on 
Figs 4 and 5. Analyzing the distribution of deformation of the 
finite element grid and state of effective strains and stresses, 
where the influence of the lubrication condition is observed. 

For 0=µ  in the contact zone tool – work piece (Fig. 4a), 
during the forming the outline of the thread, material isn’t 
braking by tool and slide through the contact surface. The 
curving of vertical line of the finite element grid is invisible. 
Other side, increase the friction coefficient causes increase 
braking of the material. For high value of the friction coefficient 
(Fig. 4b) occurs strong braking of material in the contact zone. 
Form also the adhesion zone of material. That cause higher 
displacements of material in the zone placed father from the 
contact zone. Then the line of the finite element grid are 
stronger curved.  
 
 a)                                                 b) 

  

  
 

Figure 4: The deformation of grid and the maps of effective 
stresses on a longitudinal cutting plane for various value of 
frictions coefficient 

The friction coefficient has high influence on value and 
distribution of strain. For 0=µ  the maximum of effective strain 

78,0e =ε  is located on the bottom of the thread, near to the 
contact surface (MX1, Fig. 5a). For 0>µ  appear an adhesion 
zone of material in the bottom of the thread, which take 
characteristic shape of a wedge. In this zone the value of strain is 
very small. For 39,0=µ  strains are closer to the contact surface 
and getting smaller to value 0016,0e =ε  (elastic strains) (MN, 
Fig. 5b). Whereat the local maximum of strains (MX1) moving 
down in surface layer. Then appear additional two local 
maximums of the effective strains. Second maximum (MX2) is 
placed near to the contact zone of the side of the thread, where 
higher value of friction coefficient increase strains value from 

176,0e =ε  for 0=µ  (Fig.5a) to value 54,0e =ε  for 39,0=µ  
(MX2, Fig.5b). Next one local maximum (MX3) is located in 
depth of material on symmetry axis pass through top of the 

thread. Here, strains are getting smaller together with increasing 
of friction coefficient from value 351,0e =ε  for 0=µ  
(Fig. 5a) to 423,0e =ε  for 39,0=µ  (Fig. 5b). 
 
 a)                                                 b) 

  

  
 

Figure 5: The maps of effective strains on a longitudinal cutting 
plane for various value of friction coefficient 

Grinding process [5] 
For the correct modelling and analysis of the grinding process, 
the knowledge of the course of the physical phenomena 
occurring in the machining zone in real conditions (i.e. 
geometry of grain and technological parameters) proves to be 
necessary. For this purpose, an analysis of the process of cutting 
with a single abrasive grain was conducted. The model of 
abrasive grain (Fig. 6) specified in paper [4] is considered as 
rigid or elastic body. The object is considered as the 
elastic/visco–plastic body and it’s rotating with angular velocity 
ω around own axe. An abrasive grain with the apex angle of 

o12080÷=β  and the corner radius 001,0r =  µm is tilted in 
relation to the foundation by tool cutting edge angle 

o6545÷=γ+θ+Φ=α  [6]. The depth of cut was 01,0g =  
µm. The value of the real depth of cut of the material removed 
as a result of elastic displacement was smaller and was ca. 

009,0gr =  µm.  
 

 
Figure 6: The schema of considered process of cutting with one 
abrasive grain the elastic/visco-plastic body: g – depth of cut, gr 
– real depth of cut, gs – elastic deformation of material, r – 
corner radius, vc – chip velocity, ω – angular velocity, γ – tool 
rake angle, Φ – shear angle 
 
Numerical simulation in the ANSYS system was conducted for 
different angles β and α of the abrasive grain. The object 
machined and the abrasive grain were digitized by elements of 
PLANE162 type with a non-linear function of shape. The 
contact grain with body was modeling by Single Surface Auto 
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2D (ASS2D). The net of finished elements was concentrated in 
the contact area. Sample simulation results are presented in 
Figs. 7 and 8. 

While analysing the results obtained it was found that together 
with the change of the angles α and β, the values of strains and 
stresses are subject to change. Abrupt increases of stresses are 
the result of the chip creation phenomenon. Together with the 
increase of the tool cutting edge angle, the shear angle Ф of the 
material separated from the foundation increases, as well. It 
was found that both angles have a significant influence on the 
chip shape. 

For the tool cutting edge angle o45=α , we observe fast 
disturbances of the cohesion of the material between the 
neighbouring chip elements. This results in the fact that the 
chip drops off from the cutting edge in the form of separate 
elements – a segmental chip (Fig. 7). 
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Figure 7: Map of effective strains in the chip creation phase for 
o120=β , o45=α , 001,0r =  µm 

 

For angle o65=α , there occurs the phenomenon of chip 
curling (Fig. 8) in the direction of the foundation machined – a 
stepped chip. This is the result of the fact that the chip line 
from the side of the cutting edge action surface is longer than 
the chip line on its opposite side. For angle o55=α , the chips 
created are segment chips. Fast cracking of the chip elements is 
observed. 
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Figure 8: Map of effective stresses in the chip creation phase 
for o80=β , o65=α , 001,0r =  µm 

 
6.  CONCLUSIONS 

 
The technological processes are geometrical and physical non-
linear initial and boundary problem. Boundary conditions in the 
contact zone tool-object are not determined. Measurement of a 
process parameters decide on the technological quality, such as: 

displacement, strain, stress, etc. during the process with 
nowadays technique of a measurement is impossible. About 
their course, we could conclude on the property of the product. 

An application of modern mathematical modelling, numerical 
methods and computing systems allows an analysis of complex 
physical phenomena occurring in the process under 
investigation. The application developed in the ANSYS system 
enables a time analysis of the process with the consideration of 
the changeability of the lubrications conditions. On the course 
of physical phenomena in the working zone we can forecast a 
technological quality of the product. 

The obtained results of the computer simulation of the thread 
rolling process show that the friction coefficient influence on the 
states of displacements, strains and stresses in the surface layer of 
the thread, also is one of the factors deciding about the 
technological and the exploitation quality. The best operational 
quality of the thread is received during the rolling process on 
great lubrication conditions ( 0=µ ). 

The simulation results for condition of lubrication can be use of 
while to designing the round thread rolling process: making a 
selection of the process condition and kind of the lubrication 
factor in the aspect of the technological quality of the thread. 

The obtained results of the computer simulation of the cutting 
process with a single abrasive grain with a geometry of 

o1202 =θ  and cutting edge angle o45=α  coincide with the 
results obtained by Kita and Ido [2]. The material flashes 
obtained before the grain cutting edge and its shapes similar to 
the results of experiential investigations confirm the 
justifiability of the use of computer simulations and their 
reliability. 

The distributions of stresses and strains obtained for different 
grain geometries and action angles, on particular phases of the 
deformation process, can be made use of while designing 
machining: making a selection of the machining conditions and 
its optimising in the aspect of the technological quality of the 
product. 

The distributions of stresses and strains obtained for 
different grain geometries and action angles, on particular 
phases of the deformation process, can be made use of while 
designing machining: making a selection of the machining 
conditions and its optimising in the aspect of the technological 
quality of the product. 
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