
Analyzing Data Flows of State Machines

Julio Cano, Ralf Seepold, Natividad Martinez Madrid

Dto. Ingeniería Telemática, Universidad Carlos III de Madrid

Leganes, 28911, Madrid, Spain

ABSTRACT

One of the key points in Model-Driven Development is

to provide a semantic anchoring that permits to design

an application based on some common semantics but at

the same time independently of the specific

characteristics of the final platform.

This paper proposes a common meta-model capable of

holding both state machine and data flow semantics,

two of the most used behaviour models. This is done so

that application behaviour can be described

independently of the specific platform. The application

behaviour can be based on the semantics of this meta-

model while at the same time code can be generated for

several specific platforms without changing the

application design.

1. INTRODUCTION

Semantic anchoring is the base for model

transformations [1], especially in a MDD (Model

Driven Development) process, where automatic model

transformations are highly desirable when possible to

automatize the whole development process.

This work is centred in the behaviour modelling part of

the application design. The most extended models in

the literature for behaviour modelling are state

machines and data flow diagrams. The statechart type

of state machines as described in the UML

Superstructure specification are used here due to its

extended semantics compared to the semantics of a

basic state machine.

In some cases [2] it is shown that only one behaviour

meta-model is not enough to easily model the solution

to a problem and it has to be modelled using one point

of view but implemented in a different one. Alston and

Madahar propose a solution to their problem easily

modelling it using a state machine but this state

machine is implemented using a data flow language.

This problem shows that a multi-view modelling

capability to design applications is highly desirable,

having the possibility to choose the most suited view to

solve every problem. Some proposals are made to solve

this problem, like in [3], where multiple computational

models can be used to create heterogeneous

compositions of mixed computational models. This

solution permits to solve every part of the system using

a different computational or behavioural model, but

this model cannot be changed because the semantics of

the different computational models are still separated.

What is needed is a multi-view solution where

semantics are common to all the different views,

allowing to change the view but maintaining the model

semantics, as proposed in this work, using state

machines and data flow diagrams.

State machines are generally used to describe the

behavior of software components. They can represent

the state of the component or application at every

moment during the execution of a program or system,

as well as the actions to be taken depending on the

current system state and events received. No special

emphasis is put on how data is treated through the

application components, although state machines are

considered to be a subset of Petri Nets.

On the other hand data flow diagrams are used to

represent the behavior of a system too, but based on

how data is moved from component to component and

processed. Nothing is said about the state of the system

at any point in the time of execution of the system, nor

how should the system respond to received events,

especially asynchronous ones.

However, both aspects of the behaviour of a system

(how data is processed through the system as well as

how the system responds to events depending on the

current state) are essential in the system design.

In order to achieve that objective the main aspects of

both computational models are analyzed here looking

for the common points that could let a designer to see a

system from both points of view at the same time. State

machines and data flow diagrams will be analyzed next

to find the common points.

Supposing that the system is to be designed using

components, a multi-view approach is useful to model

all the system in a hybrid point of view. To provide

such multi-view modelling possibility permits to the

different kind of developers to work on their point of

view of the system and at the same time keeping a

coherent model representing the system [5]. For

instance, software components can be represented as

data flow nodes given their interface nature with input

and output channels, while at the same time internal

behaviour of components can be represented as state

machines or data flow diagrams.

The main objective of this work is to provide a

common meta-model unifying both computational

models making it possible to design a system taking

into account both event responding and data flow

processes in the system. In this paper a different

approach to the one of Broy is used, less formal and

more oriented to its implementation in MDD

development tools.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 1 - YEAR 2010 49ISSN: 1690-4524

The next section describes the software component

model in which this work is based. Section 3 describes

the states and data flow models that are analyzed.

Section 4 compares both models analyzing the

possibilities to convert from one model to another and

the use of a common meta-model. Section 5 proposes a

common meta-model based on the previous analysis

and section 6 concludes this work with some

description of future work.

2. SOFTWARE COMPONENTS (INTERFACE

MODEL)

One of the most often used architectural (structural)

design view is the Component Model. Being an

essential part in the UML standard makes its use very

extended too. The Component Model presented in the

UML standard is related to the Interface Model, given

that emphasis is made in the interfaces of the

components. This Interface Model results close to the

SOA (Service Oriented Architecture), being both based

in the description of provided services to the rest of the

system.

In [4] several different kinds of component models are

described. One dimension on which components are

categorized is depending on composition at design

phase and other is at deployment phase. Components

can be described independently at design phase, but

instances of components in the application have to be

connected to other instances at the deployment phase.

It can be noted that independently of when component

composition is done connection through interfaces

results into a data flow diagram.

In summary, component composition can be described

using the interfaces model, a dataflow model and even

a state machine model.

In this paper it is supposed that a component model is

used for the structural description of the application so

that the behavioural description of the application is

done inside the components.

3. MULTI-VIEW MODELLING

Two of the most common behaviour modelling views

used in literature and software development in general

are the states machines and the data flow diagrams. The

subsection describe the most relevant models for the

presented approach

A. States model

The state machines model is, probably, the most

extended computational model due to its use in the

UML standard. Basic state machines lack of some

semantic elements needed for this work, so statecharts

are used instead. The possibility to use regions to

simplify the complexity of a state machine is definitely

helpful in the conversion from data flow models to

statechart models. In this work regions are considered

to work in parallel where different transitions can be

activated and executed simultaneously in separated

regions.

Here it is a somewhat simplified state machine

specification based on OMG UML 2.0 Superstructure

Specification, including regions (pseudostates are

eliminated for clarity purposes):

SM = {Regions}

Regions = {Transitions, States}

Transitions = {Trigger, Constraint, Behaviour,

S1, S2}

State = {Constraint, Trigger, entryBehaviour,

exitBehaviour, doActivityBehaviour}

Where Trigger represents the event that activates the

transition, Behaviour is the action or process executed

in the transition, S1 and S2 are the source and

destination states of the transition respectively. In this

case behaviours associated to the state are not taken

into account (entry, exit and doActivity behaviour).

The use of regions is necessary (as described before)

since state machines are compared to data flow

diagrams which are parallel by nature.

B. Data Flow model

Data flow diagrams are, as described before similar to

the components model, but with emphasis on the data

flow and processing. The main characteristic used here

is the behavioural or computational aspect instead of

the architectural or structural one.

Here it is a simple data flow diagram specification:

DFD = {Processes, DataFlows, DataStore,

External}

Where Processes are considered to be equivalent to

the Behaviour element in the state machines: it

represents the action to be applied to the data.

DataFlows are elements connecting Processes. It

specifies the data goes from one process element to

another. DataStore and External can be considered as

specific Processes that store information in local or

external areas.

In this paper data flow diagrams are considered to be

parallels, where different process units in the same

component can be activated independently. This will

be taken into account in the possible transformations

from data flow diagrams to statecharts.

4. MODELS ANALYSIS

These models do not seem to hold enough common

base to have a common meta-model that supports both

of them.

If system components are treated like black boxes a

state can be assigned to a component depending on

various elements. In a component designed with a data

flow model the state can be represented depending on

the state of the internal elements and data. The next can

represent the component behaviour:

 F: (s, I)  (s’, O)

Where s is the actual component state and I is the

input to the component, while O is the output after the

input has been processed and s’ is the new state of the

component.

50 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 1 - YEAR 2010 ISSN: 1690-4524

Trying to enumerate and describe the number of

possible states of a data flow diagram can require a

great effort depending on the complexity of the model.

This work analyzes the way to translate every element

of one model to another separately, so that step by step

the transformation from one model to another can be

affordable.

As seen in the previous section, there is a data

processing element in both models (processing units

and transition actions). The problem in state machines

is that connection between these processing elements is

not explicitly specified as in data flow diagrams. Data

is transferred from one state to another as a trigger or

event sent by a transition and received by a new active

state.

Transitions can be represented as processing elements

in a data flow diagram with input data being the event

received by the state and the output data being the

event generated by the transition.

On the other side, a data flow processing element can

be analyzed from the state machine’s point of view.

Generally, every element can be considered to be

waiting to receive input data to be processed. So this is

a wait state that can be represented in a state machine.

The input data is expected to be received with the

incoming event. This event activates the transition that

processes the input data. And after processing it the

output data is sent out. Finally, the processing element

returns to the wait state again. This means that the

transition returns to the same wait state. This can be

represented in a state machine as a transition from and

to the wait state as in Fig 1.

The notation used in this work for the representation of

the transitions in state machines is trigger / action

 event. Where trigger is the event that activates the

transition, action is the process or action to be

activated by the transition and event is the output of

the transition, generally a trigger that will activate

another transition in the application.

A first step to convert a data flow diagram to a state

machine could be to translate every processing element

to a state machine containing one wait state and a

transition to the same state. Every processing element

could be contained in a separated region of a statechart

so that independence and parallelism of every process

can be represented.

Fig 2 shows how different processing elements in a

dataflow diagram can be translated into different

regions of the same statechart. In this case the output O

of processing unit P is the input for the processing unit

P2, but this fact is not strictly represented in the

statechart. The state machine mechanism makes the

output event O of the first transition to be received by

the wait2 state and be processed like in the data flow

diagram.

Taking into account that P is always connected to P2,

the translation can be done so that the transition is

made to the wait2 state, representing similar semantics

to the data flow diagram ones. Being more specific, the

conversion can be done using microsteps given that the

data processing units are chained. As a result only one

region is needed, simplifying the statechart (see Fig 3).

I
P

O

wait

I / P  O

P2
O2

wait2

O/ P2  O2 Region 1 Region 2

Fig 1 DataFlow and State Machine correspondence

I
P

O

wait

I / P  O

I
P

O

wait

I / P  O

P2
O2

wait2

O/ P2  O2

Region 1

Fig 2 Multiple processing elements in a data flow diagram

Fig 3 Data Flow between states

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 1 - YEAR 2010 51ISSN: 1690-4524

As a result, state machines can be analyzed looking for

data transferred between states. If data or an event is

generated in a transition and received by other state and

processed in one of its transitions then it can be

translated to chained processing units in a data flow

diagram as in Fig 4.

This kind of transformation is not so simple. If the state

has several possible transitions then the second

processing unit cannot be connected only to the first

processing unit. The process activated will depend on

the event. So a selection has to be made depending on

the incoming event. Fig 5 shows an example of data

flow diagram representing a state machine. Given that

the state machine has a determined number of states

and accepted input events a selection is made

depending on them. Microsteps or chained transitions

where the output of one transition is the input of the

next transition can be transformed in chained

processing elements. This kind of representation almost

corresponds to the one in SDL (Specification and

Description Language).

The use of this notation partially solves the problem of

analyzing the state machine or statechart data flow.

SDL notation has to be used, like indicating state

changes in transitions, to keep information about actual

state in the state machine model view. But still work

has to be done to be able to fully represent a data flow

diagram using a state machine model or a possible

common meta-model that can represent both at the

same time.

There is still a semantic problem to be solved with

transitions and their activation events. One transition is

activated when an event is received in a given state.

Sometimes it is necessary to indicate that the same

transition must be activated by different events or

triggers independently. It can be represented by several

different transitions having different activation events

but with the same target state and effect. Common

semantics and modelling tools accept a list of triggers

or events that can activate a transition. But in some

occasions it is required to indicate that more than one

event is required at the same time to activate a

transition. In a data flow diagram like the one in Fig 6

the processing unit P3 has different input values and all

of them can be needed to obtain the corresponding

output. This cannot be easily represented with one wait

state and one transition at least that it can be specified

that all of these incoming events are required for the

activation. This would represent to store incoming

events until all the required ones are available. In case

that these semantics are not available a mechanism

must be found to represent it using strictly statechart

semantics.

A process unit is supposed here where all the incoming

data elements are needed for the process to be executed

but only one instance of each. Variations can be easily

created depending on the specific semantics of the

processing unit functioning. The first step is to be able

to store incoming data. Supposing a data flow diagram

with parallel nature, incoming data events will not

arrive simultaneously. To be able to process and store

every event independently a wait state is needed in an

independent region for every incoming event. Given

that only one instance is needed a second state is used

to indicate that data has already been received. This

way only the required events will be processed until all

of these regions receive the corresponding signal to

change again to the waiting state.

To know whether all required events have been

received a counter can be used. This counter consists of

a number of states indicating the number of events

received. To activate the transition between these states

the regions dedicated to receive and store incoming

data will send the corresponding signal when an event

is received. The final transition when all the needed

data is available is responsible to execute the action

corresponding to the process unit, return the counter to

0 and reset regions dedicated to receive events.

I2
P2

O2

P3
O3 I3

 S

I
P

I2
P2

O

S1

I / P  O

S2

O/ P2  O2

I
P

O
P2

O2

Fig 4 Chained data processing

Fig 5 Example of data flow diagram representing a state machine

52 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 1 - YEAR 2010 ISSN: 1690-4524

5. COMMON META-MODEL

As shown in the previous section, it is possible to

analyze data flow in state machines, generating

equivalent data flow diagrams. On the other hand, data

flow diagrams can be analyzed and statecharts can be

generated representing the same semantics. To do that

statechart regions have to be used to represent the

parallel nature of data flow diagrams.

But to be able to represent both kinds of models at the

same time and use them as complementary views a

common meta-model is needed. A meta-model is

proposed here based on the specifications used in

section 3.

One of the basic issues is representing the data flow.

To keep the states information and at the same time be

able to connect data flows only information about these

data flows is included in the state machine model.

SM = {Regions}

Regions = {Transitions, States}

Transitions = {S1, S2, Process (Input Events,

Guard condition, Output Events)}

The main changes regarding the previous model are

that the Behaviour element is named Process after the

data flow specification and it includes the guard

condition for the transition activation (previously the

constraint). The other changes are the addition of the

specification of the list of input events or triggers that

activate the transition and are supposed to be the input

data for the process and the specification of the output

data elements of the process element too. This

information permits to connect the output elements of a

process unit to the corresponding input of other process

elements.

Here is a simple example applying the proposed meta-

model to represent the models in Fig 2:

SM = {Region 1, Region 2}

Region 1 = {transition P}, {wait1}

Region 2 = {transition P2}, {wait2}

Transition P = {wait1, wait1, P (I, _, O)}

Transition P2 = {wait2, wait2, P2 (O, _, O2)}

Beside the states information, the data flow

information can be extracted from the example. There

are two process elements in the model (P and P2) both

of them with their input and output elements. These

elements can be connected because O is indicated to be

the output of the process P and the input of the process

P2. In this case no constraints are specified so a blank

space is used in the model to indicate the absence of

them.

This example shows that conversion from and to data

flow diagrams and state machines can be done. A

common meta-model based in this analysis allows

representing state machines and data flows indistinctly.

This meta-model permits an applications design tool to

design the behaviour of application components as data

flow diagrams or state machines indistinctly.

Afterwards the point of view can be changed

depending on the needs without changing the

behavioural model of the application.

6. CONCLUSIONS AND FUTURE WORK

Semantic anchoring is an important part of an MDD

process. Higher level model semantics must be based

on lower level model semantics so that refinements

between models can be implemented automatically.

In this work a simple common meta-model is proposed

to help in the semantic anchoring of one of the weakest

and complex areas in MDD: the behavioural

modelling. This meta-model permits to represent

simultaneously state machines (statecharts) and data

flow diagrams. These behaviour meta-models are used

here since they are the most widely used in the

bibliography.

The proposed meta-model can hold at the same time

the state machine and data flow model semantics

providing semantic anchoring for upper levels of the

behaviour design of applications, and at the same time

allowing the designers to use different views of the

application components depending on their specific

needs.

I2
P2

O

P3

O2

I
P

Region 1

Region 2

I / store  C

 received

wait

reset

I2 / store  C

 received

wait

reset

C

S0

C / P3 reset

S1

Region 3

Fig 6 Multiple events for transition activation

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 1 - YEAR 2010 53ISSN: 1690-4524

Future work will concentrate on the specification of

algorithms to work with this meta-model, to convert

models from one view to another. At the same time an

implementation of this meta-model will be developed

to provide behaviour modelling at a Platform

Independent level of a MDA process and code

generation for a given specific platform.

7. ACKNOWLEDGMENTS

This research has been partially supported by the

project OSAMI (Spanish Ministry of Industry, Tourism

and Commerce: TSI020400-2008-114); Caring Cars

(MEDEA+ 2A403) (Spanish Ministry of Industry,

Tourism and Commerce: FIT-330215-2007-1) and

InCare (Spanish Ministry of Education and Science:

TSI2006-13390-C02-01).

8. REFERENCES

[1] Chen, K.; Sztipanovits, J.; Abdelwalhed, S.

And Jackson E., Semantic Anchoring with

Model Transformations”, ECMDA-FA 2005,

LNCS 3748, pp. 115-129 2005.

[2] Alston, I., Madahar, B., ‘Controlling Data

Flow Applications in Gedae: Is a Finite State

Machine the Answer?’, BAE SYSTEMS,

2003.

[3] Goderis, A.; Brooks, C.; Altintas, I.; Lee,

E.A.; Goble, C.; Heterogeneous Composition

of Models of Computation. Technical Report

No. UCB/EECS-2007-139, Berkeley,

November 27, 2007.

[4] Kung-Kiu L., Zheng W., Software Component

Models, IEEE Transactions on Software

Engineering, Vol. 33, No 10, October 2007.

[5] Broy M., Multi-view Modeling of Software

Systems, LNCS 2757, pp. 207-225, 2003.

54 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 8 - NUMBER 1 - YEAR 2010 ISSN: 1690-4524

	GS341GE

