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ABSTRACT 

One of the key points in Model-Driven Development is 

to provide a semantic anchoring that permits to design 

an application based on some common semantics but at 

the same time independently of the specific 

characteristics of the final platform. 

This paper proposes a common meta-model capable of 

holding both state machine and data flow semantics, 

two of the most used behaviour models. This is done so 

that application behaviour can be described 

independently of the specific platform. The application 

behaviour can be based on the semantics of this meta-

model while at the same time code can be generated for 

several specific platforms without changing the 

application design. 

1. INTRODUCTION 

Semantic anchoring is the base for model 

transformations [1], especially in a MDD (Model 

Driven Development) process, where automatic model 

transformations are highly desirable when possible to 

automatize the whole development process. 

This work is centred in the behaviour modelling part of 

the application design. The most extended models in 

the literature for behaviour modelling are state 

machines and data flow diagrams. The statechart type 

of state machines as described in the UML 

Superstructure specification are used here due to its 

extended semantics compared to the semantics of a 

basic state machine. 

In some cases [2] it is shown that only one behaviour 

meta-model is not enough to easily model the solution 

to a problem and it has to be modelled using one point 

of view but implemented in a different one. Alston and 

Madahar propose a solution to their problem easily 

modelling it using a state machine but this state 

machine is implemented using a data flow language. 

This problem shows that a multi-view modelling 

capability to design applications is highly desirable, 

having the possibility to choose the most suited view to 

solve every problem. Some proposals are made to solve 

this problem, like in [3], where multiple computational 

models can be used to create heterogeneous 

compositions of mixed computational models. This 

solution permits to solve every part of the system using 

a different computational or behavioural model, but 

this model cannot be changed because the semantics of 

the different computational models are still separated.  

What is needed is a multi-view solution where 

semantics are common to all the different views, 

allowing to change the view but maintaining the model 

semantics, as proposed in this work, using state 

machines and data flow diagrams. 

State machines are generally used to describe the 

behavior of software components. They can represent 

the state of the component or application at every 

moment during the execution of a program or system, 

as well as the actions to be taken depending on the 

current system state and events received. No special 

emphasis is put on how data is treated through the 

application components, although state machines are 

considered to be a subset of Petri Nets. 

On the other hand data flow diagrams are used to 

represent the behavior of a system too, but based on 

how data is moved from component to component and 

processed. Nothing is said about the state of the system 

at any point in the time of execution of the system, nor 

how should the system respond to received events, 

especially asynchronous ones. 

However, both aspects of the behaviour of a system 

(how data is processed through the system as well as 

how the system responds to events depending on the 

current state) are essential in the system design. 

In order to achieve that objective the main aspects of 

both computational models are analyzed here looking 

for the common points that could let a designer to see a 

system from both points of view at the same time. State 

machines and data flow diagrams will be analyzed next 

to find the common points. 

Supposing that the system is to be designed using 

components, a multi-view approach is useful to model 

all the system in a hybrid point of view. To provide 

such multi-view modelling possibility permits to the 

different kind of developers to work on their point of 

view of the system and at the same time keeping a 

coherent model representing the system [5]. For 

instance, software components can be represented as 

data flow nodes given their interface nature with input 

and output channels, while at the same time internal 

behaviour of components can be represented as state 

machines or data flow diagrams.  

The main objective of this work is to provide a 

common meta-model unifying both computational 

models making it possible to design a system taking 

into account both event responding and data flow 

processes in the system. In this paper a different 

approach to the one of Broy is used, less formal and 

more oriented to its implementation in MDD 

development tools. 

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 8 - NUMBER 1 - YEAR 2010 49ISSN: 1690-4524



The next section describes the software component 

model in which this work is based. Section 3 describes 

the states and data flow models that are analyzed. 

Section 4 compares both models analyzing the 

possibilities to convert from one model to another and 

the use of a common meta-model. Section 5 proposes a 

common meta-model based on the previous analysis 

and section 6 concludes this work with some 

description of future work. 

2. SOFTWARE COMPONENTS (INTERFACE 

MODEL) 

One of the most often used architectural (structural) 

design view is the Component Model. Being an 

essential part in the UML standard makes its use very 

extended too. The Component Model presented in the 

UML standard is related to the Interface Model, given 

that emphasis is made in the interfaces of the 

components. This Interface Model results close to the 

SOA (Service Oriented Architecture), being both based 

in the description of provided services to the rest of the 

system. 

In [4] several different kinds of component models are 

described. One dimension on which components are 

categorized is depending on composition at design 

phase and other is at deployment phase. Components 

can be described independently at design phase, but 

instances of components in the application have to be 

connected to other instances at the deployment phase. 

It can be noted that independently of when component 

composition is done connection through interfaces 

results into a data flow diagram.  

In summary, component composition can be described 

using the interfaces model, a dataflow model and even 

a state machine model. 

In this paper it is supposed that a component model is 

used for the structural description of the application so 

that the behavioural description of the application is 

done inside the components. 

3. MULTI-VIEW MODELLING 

Two of the most common behaviour modelling views 

used in literature and software development in general 

are the states machines and the data flow diagrams. The 

subsection describe the most relevant models for the 

presented approach 

A. States model 

The state machines model is, probably, the most 

extended computational model due to its use in the 

UML standard. Basic state machines lack of some 

semantic elements needed for this work, so statecharts 

are used instead. The possibility to use regions to 

simplify the complexity of a state machine is definitely 

helpful in the conversion from data flow models to 

statechart models. In this work regions are considered 

to work in parallel where different transitions can be 

activated and executed simultaneously in separated 

regions. 

Here it is a somewhat simplified state machine 

specification based on OMG UML 2.0 Superstructure 

Specification, including regions (pseudostates are 

eliminated for clarity purposes): 

SM = {Regions} 

Regions = {Transitions, States} 

Transitions = {Trigger, Constraint, Behaviour, 

S1, S2} 

State = {Constraint, Trigger, entryBehaviour, 

exitBehaviour, doActivityBehaviour} 

Where Trigger represents the event that activates the 

transition, Behaviour is the action or process executed 

in the transition, S1 and S2 are the source and 

destination states of the transition respectively. In this 

case behaviours associated to the state are not taken 

into account (entry, exit and doActivity behaviour). 

The use of regions is necessary (as described before) 

since state machines are compared to data flow 

diagrams which are parallel by nature. 

B. Data Flow model 

Data flow diagrams are, as described before similar to 

the components model, but with emphasis on the data 

flow and processing. The main characteristic used here 

is the behavioural or computational aspect instead of 

the architectural or structural one. 

Here it is a simple data flow diagram specification: 

DFD = {Processes, DataFlows, DataStore, 

External} 

Where Processes are considered to be equivalent to 

the Behaviour element in the state machines: it 

represents the action to be applied to the data. 

DataFlows are elements connecting Processes. It 

specifies the data goes from one process element to 

another. DataStore and External can be considered as 

specific Processes that store information in local or 

external areas. 

In this paper data flow diagrams are considered to be 

parallels, where different process units in the same 

component can be activated independently. This will 

be taken into account in the possible transformations 

from data flow diagrams to statecharts. 

4. MODELS ANALYSIS  

These models do not seem to hold enough common 

base to have a common meta-model that supports both 

of them. 

If system components are treated like black boxes a 

state can be assigned to a component depending on 

various elements. In a component designed with a data 

flow model the state can be represented depending on 

the state of the internal elements and data. The next can 

represent the component behaviour: 

 F: (s, I)  (s’, O) 

Where s is the actual component state and I is the 

input to the component, while O is the output after the 

input has been processed and s’ is the new state of the 

component. 
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Trying to enumerate and describe the number of 

possible states of a data flow diagram can require a 

great effort depending on the complexity of the model. 

This work analyzes the way to translate every element 

of one model to another separately, so that step by step 

the transformation from one model to another can be 

affordable. 

As seen in the previous section, there is a data 

processing element in both models (processing units 

and transition actions). The problem in state machines 

is that connection between these processing elements is 

not explicitly specified as in data flow diagrams. Data 

is transferred from one state to another as a trigger or 

event sent by a transition and received by a new active 

state.  

Transitions can be represented as processing elements 

in a data flow diagram with input data being the event 

received by the state and the output data being the 

event generated by the transition. 

 

On the other side, a data flow processing element can 

be analyzed from the state machine’s point of view. 

Generally, every element can be considered to be 

waiting to receive input data to be processed. So this is 

a wait state that can be represented in a state machine. 

The input data is expected to be received with the 

incoming event. This event activates the transition that 

processes the input data. And after processing it the 

output data is sent out. Finally, the processing element 

returns to the wait state again. This means that the 

transition returns to the same wait state. This can be 

represented in a state machine as a transition from and 

to the wait state as in Fig 1. 

The notation used in this work for the representation of 

the transitions in state machines is trigger / action 

 event. Where trigger is the event that activates the 

transition, action is the process or action to be 

activated by the transition and event is the output of 

the transition, generally a trigger that will activate 

another transition in the application. 

A first step to convert a data flow diagram to a state 

machine could be to translate every processing element 

to a state machine containing one wait state and a 

transition to the same state. Every processing element 

could be contained in a separated region of a statechart 

so that independence and parallelism of every process 

can be represented. 

 

Fig 2 shows how different processing elements in a 

dataflow diagram can be translated into different 

regions of the same statechart. In this case the output O 

of processing unit P is the input for the processing unit 

P2, but this fact is not strictly represented in the 

statechart. The state machine mechanism makes the 

output event O of the first transition to be received by 

the wait2 state and be processed like in the data flow 

diagram. 

 

Taking into account that P is always connected to P2, 

the translation can be done so that the transition is 

made to the wait2 state, representing similar semantics 

to the data flow diagram ones. Being more specific, the 

conversion can be done using microsteps given that the 

data processing units are chained. As a result only one 

region is needed, simplifying the statechart (see Fig 3). 

I 
P 

O 

wait 

I / P  O 

P2 
O2 

wait2 

O/ P2  O2 Region 1 Region 2 

Fig 1 DataFlow and State Machine correspondence 

I 
P 

O 

wait 

I / P  O 

I 
P 

O 

wait 

I / P  O 

P2 
O2 

wait2 

O/ P2  O2 

Region 1 

Fig 2 Multiple processing elements in a data flow diagram 

Fig 3 Data Flow between states 
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As a result, state machines can be analyzed looking for 

data transferred between states. If data or an event is 

generated in a transition and received by other state and 

processed in one of its transitions then it can be 

translated to chained processing units in a data flow 

diagram as in Fig 4. 

This kind of transformation is not so simple. If the state 

has several possible transitions then the second 

processing unit cannot be connected only to the first 

processing unit. The process activated will depend on 

the event. So a selection has to be made depending on 

the incoming event. Fig 5 shows an example of data 

flow diagram representing a state machine. Given that 

the state machine has a determined number of states 

and accepted input events a selection is made 

depending on them. Microsteps or chained transitions 

where the output of one transition is the input of the 

next transition can be transformed in chained 

processing elements. This kind of representation almost 

corresponds to the one in SDL (Specification and 

Description Language). 

 

The use of this notation partially solves the problem of 

analyzing the state machine or statechart data flow. 

SDL notation has to be used, like indicating state 

changes in transitions, to keep information about actual 

state in the state machine model view. But still work 

has to be done to be able to fully represent a data flow 

diagram using a state machine model or a possible 

common meta-model that can represent both at the 

same time. 

There is still a semantic problem to be solved with 

transitions and their activation events. One transition is 

activated when an event is received in a given state. 

Sometimes it is necessary to indicate that the same 

transition must be activated by different events or 

triggers independently. It can be represented by several 

different transitions having different activation events 

but with the same target state and effect. Common 

semantics and modelling tools accept a list of triggers 

or events that can activate a transition. But in some 

occasions it is required to indicate that more than one 

event is required at the same time to activate a 

transition. In a data flow diagram like the one in Fig 6 

the processing unit P3 has different input values and all 

of them can be needed to obtain the corresponding 

output. This cannot be easily represented with one wait 

state and one transition at least that it can be specified 

that all of these incoming events are required for the 

activation. This would represent to store incoming 

events until all the required ones are available. In case 

that these semantics are not available a mechanism 

must be found to represent it using strictly statechart 

semantics. 

A process unit is supposed here where all the incoming 

data elements are needed for the process to be executed 

but only one instance of each. Variations can be easily 

created depending on the specific semantics of the 

processing unit functioning. The first step is to be able 

to store incoming data. Supposing a data flow diagram 

with parallel nature, incoming data events will not 

arrive simultaneously. To be able to process and store 

every event independently a wait state is needed in an 

independent region for every incoming event. Given 

that only one instance is needed a second state is used 

to indicate that data has already been received. This 

way only the required events will be processed until all 

of these regions receive the corresponding signal to 

change again to the waiting state. 

To know whether all required events have been 

received a counter can be used. This counter consists of 

a number of states indicating the number of events 

received. To activate the transition between these states 

the regions dedicated to receive and store incoming 

data will send the corresponding signal when an event 

is received. The final transition when all the needed 

data is available is responsible to execute the action 

corresponding to the process unit, return the counter to 

0 and reset regions dedicated to receive events. 

 

I2 
P2 

O2 

P3 
O3 I3 

 S 

I 
P 

I2 
P2 

O 

S1 

I / P  O 

S2 

O/ P2  O2 

I 
P 

O 
P2 

O2 

Fig 4 Chained data processing 

Fig 5 Example of data flow diagram representing a state machine 
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5. COMMON META-MODEL 

As shown in the previous section, it is possible to 

analyze data flow in state machines, generating 

equivalent data flow diagrams. On the other hand, data 

flow diagrams can be analyzed and statecharts can be 

generated representing the same semantics. To do that 

statechart regions have to be used to represent the 

parallel nature of data flow diagrams. 

But to be able to represent both kinds of models at the 

same time and use them as complementary views a 

common meta-model is needed. A meta-model is 

proposed here based on the specifications used in 

section 3. 

One of the basic issues is representing the data flow. 

To keep the states information and at the same time be 

able to connect data flows only information about these 

data flows is included in the state machine model. 

SM = {Regions} 

Regions = {Transitions, States} 

Transitions = {S1, S2, Process (Input Events, 

Guard condition, Output Events)} 

The main changes regarding the previous model are 

that the Behaviour element is named Process after the 

data flow specification and it includes the guard 

condition for the transition activation (previously the 

constraint). The other changes are the addition of the 

specification of the list of input events or triggers that 

activate the transition and are supposed to be the input 

data for the process and the specification of the output 

data elements of the process element too. This 

information permits to connect the output elements of a 

process unit to the corresponding input of other process 

elements. 

Here is a simple example applying the proposed meta-

model to represent the models in Fig 2: 

SM = {Region 1, Region 2} 

Region 1 = {transition P}, {wait1} 

Region 2 = {transition P2}, {wait2} 

Transition P = {wait1, wait1, P (I, _, O)} 

Transition P2 = {wait2, wait2, P2 (O, _, O2)} 

Beside the states information, the data flow 

information can be extracted from the example. There 

are two process elements in the model (P and P2) both 

of them with their input and output elements. These 

elements can be connected because O is indicated to be 

the output of the process P and the input of the process 

P2. In this case no constraints are specified so a blank 

space is used in the model to indicate the absence of 

them. 

This example shows that conversion from and to data 

flow diagrams and state machines can be done. A 

common meta-model based in this analysis allows 

representing state machines and data flows indistinctly. 

This meta-model permits an applications design tool to 

design the behaviour of application components as data 

flow diagrams or state machines indistinctly. 

Afterwards the point of view can be changed 

depending on the needs without changing the 

behavioural model of the application. 

6. CONCLUSIONS AND FUTURE WORK 

Semantic anchoring is an important part of an MDD 

process. Higher level model semantics must be based 

on lower level model semantics so that refinements 

between models can be implemented automatically. 

In this work a simple common meta-model is proposed 

to help in the semantic anchoring of one of the weakest 

and complex areas in MDD: the behavioural 

modelling. This meta-model permits to represent 

simultaneously state machines (statecharts) and data 

flow diagrams. These behaviour meta-models are used 

here since they are the most widely used in the 

bibliography.  

The proposed meta-model can hold at the same time 

the state machine and data flow model semantics 

providing semantic anchoring for upper levels of the 

behaviour design of applications, and at the same time 

allowing the designers to use different views of the 

application components depending on their specific 

needs. 

I2 
P2 

O 

P3 

 
O2 

I 
P 

Region 1 

Region 2 

I / store  C 

 received 

wait 

reset 

I2 / store  C 

 received 

wait 

reset 

C 

S0 

C / P3 reset 

S1 

Region 3 

Fig 6 Multiple events for transition activation 
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Future work will concentrate on the specification of 

algorithms to work with this meta-model, to convert 

models from one view to another. At the same time an 

implementation of this meta-model will be developed 

to provide behaviour modelling at a Platform 

Independent level of a MDA process and code 

generation for a given specific platform. 
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