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ABSTRACT 
 

Several encryption algorithms exist today for securing data in 
storage and transmission over network systems. The choice of 
encryption algorithms must weigh performance requirements 
against the call for protection of sensitive data. This research 
investigated the processing times of alternative encryption 

algorithms under specific conditions. The paper presents the 
architecture of a model multiplatform tool for the evaluation of 
candidate encryption algorithms based on different data and key 
sizes. The model software was used to appraise the real-time 
performance of DES, AES, 3DES, MD5, SHA1, and SHA2 
encryption algorithms. 

Keywords: Encryption algorithm, security, performance 

measurement, software engineering. 

 

1. INTRODUCTION 
 
A symmetric encryption algorithm uses the same key for both 
encryption and decryption. This method is also known as single 
key, secret key, or private key encryption because only one key is 
required during the encryption and decryption operations. 
 
The Digital Encryption Standard (DES) was developed by the 
American National Institute of Standards and Technology based 

on an encryption algorithm that was submitted by Horst Feistel at 
IBM Research. After a few modifications, the original block 
cipher algorithm, called Lucifer, was accepted as the cornerstone 
of the DES on January 15, 1977. Although DES was initially 
adopted as a national standard for encrypting data used in the US 
federal government, DES quickly became a world-wide standard 
for symmetric encryption. 
 

Like all other encryption methods, DES consists of both an 
algorithm and a key. The DES key is made up of eight bytes of 
data. Each byte, in turn, comprises eight bits—seven data bits and 
one parity bit—for a total of 56 bits of key data and 8 bits of 
parity data. The parity data allows systems using the key to ensure 
that the data used to make up the key is not corrupted. The 
algorithm breaks the plaintext data into blocks of 16 bits. DES 
offers four distinct modes of operations to provide varying levels 

of complexity and protection for data encryption. Unfortunately, 
because DES uses a 56-bit key to perform encryption, there is 
sufficient computing power to crack the key. Triple DES (3DES) 
was created to overcome the inherent weakness of DES.  But, it 

takes three times longer for 3DES to encrypt and decrypt. 
Therefore, the Advanced Encryption Standards (AES) that 

supports variable key and block lengths was created.  
 
Public-key encryption, also known as asymmetric encryption, 
seeks to solve the encryption key exchanges problem by 
incorporating a method for securely sharing the necessary key 
information. The drawback to this family of algorithms, however, 
is that they are typically slower than symmetric encryption 
algorithms. The literature provides in-depth concepts of 

symmetric and asymmetric encryption [4].  
 
This research focused on the design and implementation of a 
multiplatform software as a model for testing encryption 
algorithms.  The research results are compared to other major 
security protocol evaluations in the literature, and to the 
performance of Open Secure Socket Layer’s encryption software. 
Henceforth, we present the features of a Cryptographic Protocol 

Performance Program (C3P). C3P is console interface software 
that supports the evaluation of encryption protocols. The design, 
implementation, and experimental results of C3P can be replicated 
for all well-designed cryptographic algorithms.  
 
The performance of security protocols has been a subject of 
attention in the literature. Yet, published practical software tools 
for assessing the performance of encryption algorithms against 

real-world data and security requirements are rare to find. The 
performance reviews of several popular encryption protocols such 
as, the RC6, DES, 3DES, AES, Blowfish, and Rjindael have been 
evaluated [1]. These security encryption algorithms have been 
evaluated on a 2.4GHz IV laptop, in light of their capabilities to 
encrypt different types of data (text, audio, and video).  Though 
the research results in the literature are relevant, there is no clear 
discussion of the data used for the comparative evaluation of 
encryption algorithms [1].  Consequently, we have designed and 

implemented C3P as a tool for testing symmetric and asymmetric 
encryption algorithms. 
 
The literature reveals that AES is more efficient than the 
comparable encryption protocols in its group [2]. The AES’s 
throughput was proclaimed as more efficient compared to the 
counterpart symmetric algorithms. In fact, AES is also known to 
have better resistance against brute force attacks than other 

security encryption protocols. Although a third party application 
(Crypto++) was used for the testing the performance of security 
protocols in [2], it provides a good source of information. 
 
Mono is a platform initiated by Novell that supports a compiler 
for generating and executing a Common Intermediate Language 
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byte code and a class library. Mono is an open source 
implementation of Microsoft's .NET Framework based on the 
ECMA/ISO standards for C# and the Common Language Runtime 
[5]. Mono is crucial for converting executable codes into a Linux-
readable binary –for the execution of the C3P on a Linux 

machine. Essentially, on a Linux platform, Mono is installed and 
used to run the binary executable code. Mono’s C# Compiler can 
also be installed on a Windows platform and used to execute C# 
classes. The compiler “gmcs” was used to compile the C3P, to 
overcome the requirements of generating a binary executable code 
in C# 4.0. The “gmcs” generates an executable binary code. 

 

 

2. C3P DESIGN 
 
The goal of the C3P software was to design a multiplatform for 
investigating the effects of the different data and key sizes on the 
performance of encryption algorithms. Consequently, efficiency 
and lightweight were major factors in the design of C3P. The C# 
platform with the existing encryption algorithmic classes made it 

easier to design the C3P software.  
 
The architectural overview of the C3P in Figure 1 consists of a 
User Interface (UI) with a main menu, a protocol menu, and a 
menu for displaying the encryption performance results.  The UI 
was constructed as a prevailing class for each individual 
encryption page.  All interface classes have access to functions for 
printing the header and footer. Each screen utilizes these functions 

to build the basic overlay of a highly efficient interface in a 
standard format for each security protocol menu. The dynamic 
implementation of the screens makes it easy to enhance the C3P 
with features for future investigations of the performance of 
security protocols. The schematic view of the interacting program 
modules are displayed in Figure 2. Appendix A contains the 
snapshots of the major menus of the C3P. 
 
The C3P begins execution through the “Runtimes” module prior 

to invoking the main menu with capabilities for activating any of 
the encryption protocol menu classes in this research. The 
inherited menu classes have access to the “Engine.Stopwatch” and 
“Engine.RandomGenerator” classes. These public static 
procedures allow the menu classes to derive the execution time. 
The latter engine also facilitates the generation of non-pseudo 
random strings. 
 

The console environment of the C3P does not require any 
conversion of the Windows forms, and provides simplicity of 
project design and usability on non-GUI operating systems. 
Although it is possible to transport Windows forms to Linux using 
Mono, this encryption evaluation approach is not recommended 
because of its adverse testing effects on performance. 

 

 

3. C3P IMPLEMENTATION 
 
The need exists to use tools and libraries that conform to the 
Common Language Infrastructure for developing platform-
independent software applications.  Mono and DotGNU were two 
candidate .NET infrastructure conversion software bundles 
deemed relevant to the implementation of the C3P. Mono offers 

the .Net conversion to Common Language Runtime (CLR), while 
the project code base of the DotGNU provides a hundred percent 
Common Language Specification amenable in a class library [5]. 
However, Mono offers more advantages over the Dot GNU in the 
implementation of the “System.Security.Cryptography” class. 

Mono is easier and more suited to code conversion and the 
overall design of class-based software architecture. Moreover 
Mono offers a useful documentation on the compilation of the 
CLR binary. 
 
The implementation of the C3P focused on streamlining every 
function, method, or class to avoid negating the true performance 
of the actual encryption algorithms. C# with existing 

cryptographic libraries [6, 7, 8] was used to implement the C3P. 
The codes of each data encryption algorithm were implemented in 
C3P within the limitation of the hardware. However, the codes 
were designed to be as fast as the operations of the original 
encryption algorithms. 
 
The progression of instructions for the hash functions MD5, 
SHA1, and SHA2 in the literature [8] is: 

a) Create an encoder object to encode the string. 
b) Create a service provider for the appropriate hash. 
c) Create a new array of bytes to capture the value of 

computed hash of the encoded string from the service 
provider. 

d) Return the created array to the calling object. 
 
The process for generating the AES in Cipher Block Chaining 

mode available in [6] is: 
a) Create an array of bytes of the encoded 16 ASCII 

characters (the Initial Vector) of the AES algorithm. 
b) Generate a password for the overridden encoded values 

(Plaintext, Password, and Salt) of the constructor. 
c) Create a Rijndael managed symmetric key object. 
d) Set the key object’s cipher mode to the appropriate 

mode –Cipher Block Chaining was used in C3P. 
e) Create the encrypting object and use a memory stream 

to write the blocks to a new array.  
f) Close memory streams for efficiency and cleanup. 

 
The course of actions for DES and 3DES (TDEA) defined in [7] 
is: 

a) Encode a random string of 8 bytes long. 
b) Create a DES Service provider object. 
c) Create a new Memorystream object for the 

Cryptostream object to read into. 
d) Write with a Streamwriter, the original string with the 

Cryptostream attached. 
e) Clean up all objects. Close all memory sockets. 

 
The MSDN library offers reference information, sample codes 
and technical articles for the use of Microsoft® tools, products 
and technologies in multiplatform software development. The 

MSDN project was valuable in building the C3P. 

 

 

4. TESTING AND RESULTS 
 
A 2.4GHz Intel Pentium 4, with single core processor similar to 
laptops normally used to test the performance of security 
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protocols in the literature, was applied to investigate the 
performances of the various security protocols. We recognize that 
machines with more processing power typically provide faster 
encryption performance results [1]. In this project, the 
performance of the C3P was compared to the encryption 

performance of OpenSSL [9] on Ubuntu 9.1. The milliseconds 
required by the different encryption algorithms to encrypt various 
data sizes are illuminated in Figure 3. The three data sizes of 
20,527 bytes, 127,325 bytes, and 232,298 bytes used in this 
research are the mid-points of experimental data sizes reported in 
the literature [2]. Moreover, these data sizes provide reliable test 
bed for comparing the performances of the C3P and OpenSSL. 
 

The experimental results derived from the C3P in Figure 3 exhibit 
similar patterns to those generated from the OpenSSL data. AES, 
DES, and 3DES all show similar in encryption times for small 
data sizes. However, there is a disparity in the encryption times as 
the data size increased. This result is not surprising given that 
AES requires the password to be generated, and consequently 
more encryption time as the data size increased. 3DES [TDEA] 
requires approximately triple the time it take the ordinary DES to 

encrypt data on an average data scale.  The results are not 
surprising because they are consistent with the findings in the 
literature [2]. Figure 3 also illuminates the execution results of the 
hash functions on the C3P. The performance of SHA1 was 
slightly better than that of MD5, but SHA2 exhibited the lowest 
runtime performance. As the data size grows, the SHA2 tends to 
exhibit an exponential-like runtime growth. 
 

The milliseconds required by the different encryption algorithms 
to encrypt various data and key sizes are presented in Figures 4, 5 
and 6 for AES, 3DES and SHA2 respectively. Figure 4 reveals a 
noteworthy change in the encryption performance of the AES as 
the key size changes with the data size. The larger the data size, 
the more the effects of the key size on the AES encryption 
performance. This result is not surprising given that the OpenSSL 
exhibited a parallel outcome. Clearly, there is a striking difference 
in the encryption times of AES when the key size is doubled from 

128 bits to 256 bits as the data size increases.  
 
Figure 5 demonstrates that the key size insignificant effect on the 
encryption performance of 3DES as the data size grows. The 
experimental results from OpenSSL also attested this claim. In 
fact 5,807,450 bytes were encrypted in 3 seconds with 3DES-128 
bits key –the amount of time to encrypt 5,780,580 bytes with 
3DES-192 bits key. These results explain the minimal effects of 

modifying the key size from 128 bits to 192 bits on the encryption 
performance of 3DES. 
 
Figure 6 shows that data encryption with SHA2-256 is faster than 
data encryption with both SHA2-384 and SHA2-512, as the data 
size increases. As the key size increases from 256 bits to 384 bits 
there is a remarkable amplification of the encryption time. But, 
the change of key size from 384 bits to 512 bits slightly increases 

the data encryption time. This observation is not surprising 
because the OpenSSL results also revealed no significant 
difference between the encryption performance of SHA2-384 and 
SHA2-512. 
 
The coefficients of the regression equations for forecasting the 
times it take to encrypt bytes of information using the DES, MD5, 
AES and SHA algorithms are displayed in Tables 7, 8 and 9. Note 

that the coefficient of determination (R-Sq) of each equation is 
reasonably high. That is, the models for predicting the runtimes of 
the encryption algorithms are reliable.  However, the runtimes 
derived from any of these prediction equations will depend on the 
speed of the CPU as illustrated in Tables 10 and 11. Notice that 

the execution time decreased by approximately 25 percent as the 
CPU speed increased from nearly 2 GHz to 2.66 GHz. The 
equation for forecasting the runtime (T) it takes to encrypt bytes 
(B) using the intercept (α), slope (β) and CPU speed (CS in MHz) 
is T = (α + β(B)) *2405/CS, where β = STB/(SB)2, α = Average(T) 
– β* Average(B), STB and (SB)2 are the covariance of T and B, and 
the variance of B respectively. Tables 12, 13 and 14 show the 
respective runtime data generated by a 2405 MHz CPU and used 

to derive the regression equations for DES, MD5, AES and SHA. 
As illuminated in Figure 15, the runtimes exhibited a linear 
pattern.  
 
When the C3P was used to encrypt 500,000 random bytes 5 times 
with DES on a personal computer with a processor clock speed of 
2659 MHz, the average time was 100 milliseconds. The graphical 
display of the runtimes is shown in Figure 16.  

 
 

5. CONCLUSIONS 
 
We have designed and implemented the C3P as replica of 

console-driven platform-independent software for testing the 
performance of security protocols.  The current C3P 
implementation only supports a 32-bit long integer. The C3P 
supports the specification of data files to be encrypted. The C3P 
provides a graphical display of the encryption runtimes when the 
number of iterations is specified for the random bytes to be 
encrypted. The C3P can be easily modified to support decryption. 
The C3P architecture is generic and flexible to support the 
performance evaluation of emerging novel encryption protocols. 

The C3P is a valuable instructional tool for courses in 
cryptography, advanced network programming and software 
engineering. The C3P is a priceless tool for investigating the 
tradeoffs between enhanced securities versus processing 
performance. 
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Figure 1. Architectural layout of the C3P 

Figure 2. Schematic View of the Interacting Program Modules 
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Figure 3. Time Performance of Different Encrypting Protocols for Various Random Data Sizes  

 

 

 

 
Figure 4. Execution Times for Various  

                AES Key and Random Data Sizes 

  

 

 

 
Figure 5. Execution Times for Various 

             3DES Key and Random Data Sizes  
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Figure 6. Execution Times for Various  

              3DES Key and Random Data Sizes  

 

 

 
DES 3DES128 3DES192 MD5 

Intercept  0.8821 4.52459 5.70569 1.607 

Slope  0.0002 0.00053 0.00054 0.0001 

Correlation 0.9968 0.99446 0.99786 0.9983 

R-Sq 0.9935 0.98895 0.99573 0.9965 
 

Table 7. Regression Equations of DES and MD5 

 

 

 

 

 
AES128 AES192 AES256 

Intercept 10.0601 11.791 19.4022 

Slope 0.00028 0.0003 0.00036 

Correlation 0.99142 0.9909 0.9843 

R-Sq 0.98292 0.9819 0.96886 
 

Table 8. Regression Equations of AES  

 

 

 

 

 

 
SHA1 

SHA2-
256 

SHA2-
384 

SHA2-
512 

Intercept  0.5671 14.36323 9.413761 -27.077 

Slope 0.0001 0.000249 0.000757 0.001094 

Correlation 0.991 0.977094 0.998049 0.96722 

R-Sq 0.9821 0.954712 0.996102 0.935515 

 

Table 9. Regression Equations of SHA 

 

 

BYTES MD5 SHA2-384 

50000 6 147 

100000 14 175 

200000 28 281 

500000 72 579 

   Table 10. Execution Times for 1997 MHz CPU 

 
 
 
 
 
 
 

BYTES MD5 SHA2-384 

50000 2 55 

100000 5 72 

200000 10 139 

500000 29 359 

   Table 11. Execution Times for 2659 MHz CPU 

 
 
 

BYTES DES 3DES128 3DES192 MD5 

20527 4 10 12 7 

50000 17 29 33 10 

100000 22 67 67 14 

137325 30 69 71 21 

150000 33 95 89 22 

175000 39 109 107 27 

200000 45 114 116 31 

232298 48 116 120 35 

250000 54 125 143 40 

300000 71 153 169 47 

350000 77 194 196 54 

400000 93 219 222 61 

450000 100 245 248 68 

500000 109 268 273 75 
 

Table 12. Execution Times of DES and MD5 on 

                 2405 MHz CPU 
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BYTES AES128 AES192 AES256 

20527 7 8 9 

50000 15 24 36 

100000 41 36 56 

137325 53 60 66 

150000 58 65 71 

175000 63 71 81 

200000 67 78 95 

232298 84 94 118 

250000 89 102 124 

300000 94 110 132 

350000 106 123 151 

400000 122 131 162 

450000 137 154 174 

500000 147 166 183 
 

Table 13. Execution Times of AES on 2405 MHz  

                 CPU 

 
 
 
 
 
 
 

BYTES SHA1 
SHA2-
256 

SHA2-
384 

SHA2-
512 

20527 2 13 17 18 

50000 4 19 40 46 

100000 11 28 85 102 

137325 18 47 117 124 

150000 21 52 128 143 

175000 26 65 141 162 

200000 29 72 161 182 

232298 33 81 191 197 

250000 36 89 210 231 

300000 40 97 235 291 

350000 43 105 284 318 

400000 48 111 298 378 

450000 56 118 349 413 

500000 67 129 384 644 
 
Table 14. Execution Times of SHA on 2405 MHz  

                 CPU 

 

 

 
 
Figure 15. Graph of the Runtimes of MD5  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 16. Sample Graph of Runtimes for DES 
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