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ABSTRACT

This paper aims at improving the accuracy of the non-
negative matrix factorization approach to word learn-
ing and recognition of spoken utterances. We pro-
pose and compare three coding methods to alleviate
quantization errors involved in the vector quantization
(VQ) of speech spectra: multi-codebooks, soft VQ and
adaptive VQ. We evaluate on the task of spotting a
vocabulary of 50 keywords in continuous speech. The
error rates of multi-codebooks decreased with increas-
ing number of codebooks, but the accuracy leveled off
around 5 to 10 codebooks. Soft VQ and adaptive VQ
made a better trade-off between the required memory
and the accuracy. The best of the proposed methods
reduce the error rate to 1.2% from the 1.9% obtained
with a single codebook. The coding methods and the
model framework may also prove useful for applica-
tions such as topic discovery/detection and mining of
sequential patterns.
Keywords: vocabulary acquisition, vector quantiza-
tion, non-negative matrix factorization, histograms of
the acoustic co-occurrence, multi-stream feature

1 INTRODUCTION

A novel framework for discovering words in utterances
and subsequently recognizing those words in contin-
uous speech was proposed in [1][2]. The approach
relies on non-negative matrix factorization (NMF -
[3]), an information discovery method that finds ad-
ditive parts in data. Every utterance is mapped to a
Histogram of Acoustic Co-occurrences (HAC), a non-
negative representation of speech in which the HAC
of an utterance is the weighted sum of the HAC of
words. Hence, in the ideal case, the HAC of words can
be found with NMF as the additive parts that make
up a collection of utterance-level HACs. The HAC-
based NMF framework actually models how humans
abstract useful patterns from speech and conceptual
facts, and is a data-driven learning process that is

distinct from the conventional model-driven HMM.
NMF is able to discover relations in high-dimensional
representations. By concatenating feature represen-
tations of multiple modalities, it can find correlations
between knowledge sources and therewith establish
cross-modal relations. For instance, the acoustic and
visual form of “dog” can be related, even if embedded
in a scene of other acoustic and visual objects. As
pointed out in [4] [5], this is relevant to modeling how
humans acquire language.

One way of forming the HAC data is by observing
the co-occurrence frequencies of prototypical short-
term speech spectra. Finding a close prototype for
a given spectrum involves vector quantization (VQ).
The VQ process forces us to make compromises on
the recognition accuracy that can be obtained with
the NMF approach. While we have shown in [1] that
the approach can produce an accuracy that is com-
parable to that of discrete density HMMs, the ques-
tion naturally arises of how to generate accuracies
that are comparable to those of continuous density
HMMs. An obvious first approach is to increase the
codebook size, such that the quantization error can be
reduced. However, since the HAC representation used
in the NMF model is based on co-occurrence statis-
tics, we estimate that the data requirements would
scale quadratically with the codebook size, which is
even worse than the linear scaling one observes with
discrete density HMMs.

In this paper, we report on our continued efforts
to search for alternative representations that mitigate
the loss due to quantization errors. In earlier work
[6], we exploited the fact that NMF can be used as
the learning algorithm in a layered architecture and
that it can easily cope with high-dimensional data.
This allowed to represent speech as a sum of struc-
tures in the time-frequency plane. In this paper, we
exploit the property that NMF can easily combine in-
formation from multiple streams [2]. We particularly
look for ways to encode the spectral information with
greater accuracy without increasing the complexity as
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much as one would by merely increasing the code-
book size. Moreover, we keep in mind that our task
is “recognition” and does not end at “coding”: recog-
nition requires generalization to avoid overlearning.

A first technique that we explore is to use multiple
codebooks with different Voronoi regions on the same
information stream, a technique which has also been
applied to HMMs [7]. This way, the set of spectra that
are mapped to the same quantized representation is
reduced and hence quantization effects are reduced.
However, each of the codebooks can remain small and
the data requirements are not increased as we add
more codebooks. Admittedly, such a representation
is redundant and not optimal from the perspective of
efficient coding. However, in this context, where the
data requirements scale quadratically with codebook
size and where NMF has been shown to be able to
exploit information from redundant acoustic sources
[2], this is not a major concern.

A second technique that is explored here is soft
VQ, i.e. a spectral data vector characterized by its
proximity to multiple prototypes. Proximity is mea-
sured as the posterior probability of a collection of
Gaussians, much like in semi-continuous HMMs [8].
To keep the NMF problem computationally feasible,
we require that the data matrix is sufficiently sparse,
which translates into the requirements that each spec-
tral vector can be characterized only by its proximity
of a “limited” set of prototypes.

A third technique, adaptive VQ, is proposed to in-
crease sparsity and hence to save memory as well as
retaining the accuracy of coding with soft VQ. The
number of Gaussians used to label each frame is de-
fined adaptively based on their frame likelihoods. The
frames near the centroids will use a small number of
Gaussians while the ones near the boundaries will get
many activations on the nearby Gaussians.

The paper is organized as follows: the frame coding
method and the architecture of the NMF model are
described in section 2; the experimental results are
presented in section 3; the discussion and comparison
are in section 4; the conclusion is in section 5.

2 FRAME CODING AND

ACOUSTIC CO-OCCURRENCE

IN THE NMF MODEL

The basic idea in [2] is applying batch NMF for the
acoustic representation of the utterances. With the
powerful ability of extracting parts from objects, NMF
can find recurring word-like patterns. The diagram
of making histogram of the acoustic co-occurrence is
shown in Figure 1 and is now explained in more detail.

2.1 Frame Coding and HAC Model

An input utterance is processed as is common in
speech recognition by hopping an analysis window
(e.g. 20ms length) over the utterance by advancing
it over regular frame shifts (e.g. 10ms) and comput-
ing a short term spectrum which is transformed to Mel
Frequency Cepstral Coefficients (MFCCs), yielding a
sequence of static (S) stream vectors, one per frame.
To emphasize the dynamics in speech, the first (veloc-
ity - V) and second order (acceleration - A) difference
of this sequence is computed as well. Each of these
three HAC-representation streams is quantized by its
own codebook. The resulting label sequence is shown
in Figure 1 for the static (MFCC) stream. The num-
ber of times two codewords of a stream co-occur at a
fixed time difference or lag is then counted over the
utterance. The number of bins in the resulting HAC
representation equals the square of the codebook size.
When multiple utterances are available, the HAC rep-
resentations are stacked in a matrix A: one column
per utterance.

The VQ makes the representation of co-occurrences
symbolic but with less accuracy due to the lossy com-
pression. At first sight, we can decrease the VQ er-
rors by enlarging the codebook size. Unfortunately,
this will lead to over training: some codeword pairs
may become unobserved in training while observed in
the test and vice versa. By introducing the methods
of multi-codebooks and soft VQ into the HAC model,
we can improve the VQ resolution as well as avoid-
ing overtraining. The adaptive VQ can further save
processing time and memory.

Figure 1: Diagram of HAC. With the conventional
MFCC pipeline, an utterance can be transformed into
a sequence of vectors. The vectors are then com-
pressed into a sequence of numbers (VQ labels) by vec-
tor quantization. Finally, the codeword co-occurrences
are counted and stored and flattened into a column of
the data matrix A.
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Multi-codebooks The above process of making
a HAC representation for an utterance is identical for
the Static, Velocity, or Acceleration stream, for differ-
ent lags, for different codebooks or even for different
window lengths and frame shifts. We will call the
HAC computed by a particular choice of signal analy-
sis parameters and lag and applying a given codebook
to quantize a stream, a feature. So in the above ex-
ample with 3 streams all with 10ms frame shift and
20 ms window, each quantized with one codebook, but
using 3 different lag values, there will be 9 features.

The feature matrices made from different lags,
different streams, and different codebooks, Aq, i =
1, 2, . . . , Q, can be concatenated to get the integrated
acoustic feature matrix for the training or the testing
set

A =











A1

A2

...
AQ











(1)

where Q is the number of features, and each column
of A represents an utterance.

All HAC representations share that the observed
histogram counts are the sum of co-occurrence fre-
quencies of the words that make up the utterance. By
stacking some or all of them into a supervector, we
can obtain a more accurate description of the utter-
ance [2].

Soft VQ Soft VQ is making the membership
function fuzzy using a probabilistic model for each
cluster. When labeling a frame, we will not make a
hard decision about cluster membership, but assign a
membership score proportional to its likelihood.

For each stream, a codebook of T clusters was con-
structed with k -means clustering:

• cluster centers: C1, C2, . . . , CT

• covariance matrix of the cluster: Σ1, Σ2, . . . , ΣT

With a Gaussian assumption, the likelihood of a the
stream’s data vector x (analysis frame) on codeword
Cn is,

p(x; n) =
1

√

(2π)D|Σn|
exp{−

1

2
(x−Cn)T Σ−1

n (x−Cn)}

(2)
where D is the dimension of MFCC vectors of a
stream. To retain sparsity, only the top K-ranking
clusters are retained:

p(x; nx,1), p(x; nx,2), . . . , p(x; nx,K) (3)

where nx,1, nx,2, . . . , nx,K are the K Gaussians with
the highest likelihood for the frame x. The normalized

scores used for computing the co-occurrence probabil-
ities are derived as the posterior Gaussian probabili-
ties.

p̂(x; nx,k) =
p(x; nx,k)

∑K

l=1 p(x; nx,l)
(4)

In the HAC-representation, the contribution to the
co-occurrence of {nx,k, ny,l} (where x and y are two
frames separated in the time domain by the lag

parameter) will be

p̂(x; nx,k)p̂(y; ny,l) (5)

One can see that the joint probability of x, y still sums
to 1.

∑

k

∑

l

p̂(x; nx,k)p̂(y; ny,l) = 1 (6)

Adaptive VQ In the adaptive VQ method, we
try to select K adaptively for each frame according
to its scores against all clusters. Two methods are
proposed in the paper.

One is to select K according to the dif-
ferences of sorted scores. For frame data
x, suppose the decreasing score sequence is
p(x; nx,1), p(x; nx,2), . . . , p(x; nx,T ). Their differences
are,

δ(x; t) = p(x; nx,t) − p(x; nx,t+1), t = 1, 2, . . . , T − 1
(7)

Intuitively, for each frame, we look for the break point
K where the sorted likelihood scores of the clusters de-
crease abruptly from “important” to “less important”
clusters:

Kx = min(argmaxtδ(x; t), 10) (8)

Then Kx codewords are used for labeling the frame.
Kx is selected adaptively for each frame. 10 is used
to keep the sparsity of the coding, that is we select
10 codewords for each frame at most. After normal-
ization, the scores can be used for a probabilistic de-
scription of the co-occurrence.
Another approach is setting a threshold,

ηx =
p(x; nx,1)

10
(9)

Then K is selected by the following formula.

Kx = min(argmintp(x; nx,t) > ηx, 5) (10)

where 5 is used to maintain the sparsity of the coding.
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2.2 HAC-based NMF Model for Vo-

cabulary Acquisition

Above we described how to make an acoustic co-
occurrence matrix (Eq.(1)) using the HAC model. In
principle, the HAC word representations can be found
in an unsupervised manner by NMF applied to the
sparse matrix A and taking Kullback-Leibler diver-
gence as the cost function [2]. If a grounding matrix
G is used as supervision, the NMF model will find the
vocabulary much more accurately as explained in the
next two subsections.

Training Model The grounding matrix G was
used as supervision to associate speech features and
patterns with speech events and evidences. For the
training set, if the n-th utterance is known to con-
tain L key words from a set of M with indices
m1, m2, . . . , mL (1 <= mi <= M), we can construct
the M×N grounding matrix G with accumulated ones
in its ml-th row and n-th column and zero elsewhere,
where l = 1, 2, . . . , L and N is the number of utter-
ances in the training set. For details about the NMF
model and the factorization algorithms, one can refer
to [2] and [3]. The basic formula is as follows.

V =

[

G

A

]

≈

[

Wg

Wa

]

H (11)

The learned HAC representations of the parts that
all utterances are composed of are contained in Wa.
The matrix Wg links the HAC representations to the
word tags. The matrix H contains the word activa-
tions on the training set.

Recognition In the stage of recognition, we first
compute the activation probability matrix H ′ of the
learned parts,

A′ = WaH ′ (12)

where A′ is the acoustic feature matrix of the utter-
ances in the test set. Only H ′ needs to be estimated
while Wa is the trained model. The activation matrix
B of the key words is subsequently computed for the
testing utterances:

B = WgH
′ (13)

By thresholding these keyword activations, we can de-
tect words in the utterances. The threshold value
will trade off false alarms for missed detections. In
our evaluation, we always choose the operating point
where both error types have the same occurrence fre-
quency, i.e. we report the equal error rate of word
detection.

Table 1: Equal Error Rates of Multi-codebooks Method

Number of Codebooks 1 3 5 10 15
Equal Error Rates(%) 1.869 1.600 1.559 1.551 1.547

s.t.d.(%) 0.04 0.04 0.06 0.06 0.04

Table 2: Equal Error Rates of Soft VQ with K = 1

Number of Codebooks 1 2 3 5
Equal Error Rates(%) 1.646 1.501 1.372 1.393

s.t.d.(%) 0.04 0.02 0.04 0.04

Table 3: Equal Error Rates of Soft VQ with K = 3

Number of Codebooks 1 2 3 6
Equal Error Rates(%) 1.325 1.291 1.253 1.208

s.t.d.(%) 0.07 0.06 0.06 0.08

3 WORD ACQUISITION RESULTS

The experiments were made on the ACORNS-Y2-UK
database [4]. It contains 50 English keywords, each
occurring at least 50 times across the entire database.
There are 9998 utterances in the training set and 3300
utterances in the test set, originating from 10 speak-
ers. The aim of the ACORNS project is to learn how
infants can learn words, so these words are based on
the list of words infants of about 12-15 months old are
reported to understand [5].

The window length for spectral analysis was 20ms
and the frame shift (hopping) was 10ms. The MFCC
extraction used 30 MEL-filter banks from which 12
MFCC coefficients are computed plus the frame’s log-
energy. The codebook sizes for streams S,V,A were
250, 250 and 100 respectively. We selected 3% of
the utterances randomly to train the codebooks. The
lags (see Section 2.1.2) were 20, 50 and 90 ms. The
common factorization dimension was 75 (refer to 11),
which was larger than the number of key words (50)
to deal with the information of non-keywords. NMF
requires an iterative algorithm which is initialized as
described in [1].

To avoid the singularity of the covariance matrix of
each cluster in soft VQ, principal direction bisection
was used for making sure that every cluster has at
least 10× D elements where D = 13 is the dimension
of MFCC vectors of each stream.

Since the NMF algorithm is not guaranteed to find
the global minimum of its cost function, we always
made 5 training attempts and report the mean error
rate and the standard deviation. The mean values and
standard deviations are shown in Table 1 to Table 6,
the error rates versus the memory required to run the
NMF programs are plotted in Figure 2.
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Table 4: Equal Error Rates of Soft VQ with K = 5

Number of Codebooks 1 2 3 5
Equal Error Rates(%) 1.330 1.263 1.222 1.207

s.t.d.(%) 0.08 0.07 0.05 0.03

Table 5: Equal Error Rates of Adaptive VQ using the
Differences, criterion Eq.(8)

Number of Codebooks 1 3 5 10
Equal Error Rates(%) 1.463 1.358 1.328 1.315

s.t.d.(%) 0.06 0.05 0.04 0.04

Table 6: Equal Error Rates of Adaptive VQ using the
Threshold, criterion Eq.(10)

Number of Codebooks 1 3 5 10
Equal Error Rates(%) 1.291 1.241 1.219 1.258

s.t.d.(%) 0.05 0.03 0.03 0.06

4 DISCUSSION

The multi-codebooks method successfully decreases
the error rate with increasing number of features (Ta-
ble 1). Different data was used to train the code-
books in each feature. However, the accuracy levels off
around 5 to 10 codebooks. That’s probably because
increasing the number of codebooks suffers from poor
generalization given the limited training data.

By modeling each cluster (codebook) as a full-
diagonal Gaussian and making soft assignment of
MFCCs on the codebooks, the performance of our
model was further improved as in Table 2, Table 3
and Table 4.

Adaptive VQ can keep the good performance of soft
VQ ( Table 5 and Table 6) while using a lower memory
by pruning the labels with small scores for each frame.

Figure 2 shows the change of error rates with re-
spect to the required memory. Here, more features
means larger A matrix and hence more memory. Com-
pared to the baseline in Figure 2, where we merely in-
crease the codebook size, we do succeed in decreasing
the error rates significantly with the proposed meth-
ods. In Figure 2, we can also find that applying soft
VQ and adaptive VQ is a better compromise of re-
quired memory versus accuracy. K = 3 is a good
choice for the number of codewords to be retained for
each frame. We also checked the average number of
labels applied for each frame in the two adaptive VQ
techniques. For the first one, the average number is
1.2, for the second one, it is 1.8, which are in line with
the memory plot in Figure 2.

Notice that the criteria of labeling frames is differ-
ent between hard VQ (Table 1) and soft VQ with
K = 1 (Table 2). The first one uses Euclidean dis-

tances, while the second one is tantamount to Ma-
hanalobis distance.
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Figure 2: Comparison of the Coding meth-
ods. The baseline is the results with increasing
codebook size (S250,V250,A100; S350,V350,A300;
S500,V500,A400). K is the number of selected labels
for each frame in Soft VQ. Adapt VQ 1 selects labels
with the differences of the sorted scores for each frame.
Adapt VQ 2 takes the 1/10 of the largest score of the
frame as the threshold. The number of Codebooks in-
creases from left to right of the figure.

5 CONCLUSION

Recurring acoustic co-occurrence relationships can be
learned by non-negative matrix factorization (NMF).
But when applying the method directly to traditional
MFCC speech representations, the procedure involves
vector quantization, which leads to accuracy loss. The
proposed methods improved the accuracy of the NMF-
approach to word learning and recognition of spoken
utterances. The coding methods can overcome the
disadvantages to some extent using multi-codebooks
(multi-stream data fusion) or soft VQ and adaptive
soft VQ. According to the evaluation on the task of
spotting a vocabulary of 50 keywords in continuous
speech, the performance can be improved by 35% (rel-
ative) with respect to the original coding using one
codebook and hard VQ. So with the newly introduced
methods, the information loss due to hard VQ can be
alleviated. The ratio between the “gain” (the error
rates) and the “pain” (the required memory) was im-
proved as well.

However, the performance levels off as we scale up
the present approaches to more complex models. We
can see that the error rates will not decrease so much
when using more than 5 codebooks (Figure 2). In
future research, we will combine these methods with
feature selection to address the scaling problem. NMF
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further has the ability to cope with the high dimen-
sional representations that arise naturally when con-
sidering long-span time-frequency features.

The coding methods and the model framework may
also prove useful for applications such as topic dis-
covery and detection in large speech database. The
modeling of co-occurrences can be used to mining of
sequential patterns when integrated with NMF and
Kullback-Leibler divergence.
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