
Handling Undiscovered Vulnerabilities Using a
Provenance Network

Amrit’anshu Thakur(1,2), Dr. Rayford Vaughn(1) and Valentine Anantharaj(2)
1. Department of Computer Science & Engineering

2. GeoResource Institute, High Performance Computing Collaboratory
Mississippi State University

Starkville, MS 39759
amrit@gri.msstate.edu, vaughn@cse.msstate.edu, val@gri.msstate.edu

Abstract—This paper elaborates on a novel approach at
preventing exploits from vulnerabilities which remain uncovered
during the testing phase of a system’s development lifecycle. The
combination of predicted usage patterns, a Provenance network
model and a clustering methodology provide a secure failure
mechanism for both known and unknown security issues within
the system. The paper also addresses of the requisite supporting
infrastructure and deployment issues related to the model. The
idea is to approach the growing problem of newer and more
complex vulnerabilities in an ever more intricate and vast set
of systems using a generic software state mapping procedure
for recognizable (and thus the complementary unrecognizable)
patterns to judge the stability at each step in an operation
sequence. Thus abstracting these vulnerabilities at a higher level
provides us a generic technique to classify and handle such
concerns in the future and in turn prevent exploits before a
corrective patch is released.

I. INTRODUCTION

Most traditional software engineering lifecycles have a
significantly large testing phase towards the end. From a
conventional standpoint, this phase was primarily aimed at
testing the ’acceptable’ functionality of the system. Require-
ments were traced from design and development through
atomic partitions of test cases. Analysis was limited to the
deployment of requested services and their associated quality
parameters. There was a distinctive lack of an early and in
depth scrutiny of design, code or even test cases. Bug fixing
commenced well into the testing phase and there was little
or no attention directed towards potential security concerns.
All that has changed in more recent years. There is a growing
awareness of the criticality of considering security issues early
on and integrating them as part of the software develop-
ment lifecycle. Modern standards of development recommend
security considerations not as a bolt on feature but as an
integral part of the development process [1]. More emphasis
is placed on the creation of standards, reviews, validation,
practices, documentation and building of a secure component
from scratch rather than worrying about it in the end [6][7].
The new paradigm of systems development has resulted in
better security. Current requirement models which consider
multiple perspectives [15] from the beginning have resulted in
the creation of methods which represent different customizable
viewpoints [14] such as the system’s security, from the very
onset of its development rather than a break fix approach

later on. The functionality and pervasiveness of complicated
interconnected systems is on the rise and unfortunately so are
the safety issues. Expert evaluation of thousands of lines of
interdependent code is a costly, tedious and often ineffective
proposition. Automated procedures are either too specific
or too unproductive without manual intervention. Another
problem is the constantly evolving nature of vulnerabilities. It
is extremely difficult (if not impossible) to derive a universal
set of potential vulnerabilities and variants. Thus it is wise
to devise methods of generic security applicability which are
not only more effective but also mature in practice while
maintaining a wider audience base. We suggest a method of
addressing known and unknown vulnerabilities using concepts
of provenance and pattern matching. Data Provenance is a
methodology to capture the steps of derivation of an end
data product and incorporating it with the final dataset thus
making it more self describing [8] and semantically intelligent.
This also helps in the appraisal of trust or quality of the
information in the dataset [2][9]. A provenance based trust
network created during a systematic testing process is used as
a reference point for the system’s usage. This enables handling
of known and unknown exceptions which could be potential
threats to the system. The concept of provenance has been
successfully used in several complex domains (which require
a comprehensive semantic traceability mechanism) such as
health sciences, chemical industries and scientific computing
[9]. Its use in a software engineering related security area
could be somewhat of a novelty. Another idea used here
and borrowed from an external domain is that of automated
clustering based on individual cluster characteristics. The mo-
tivation is to put into place some form of clustering technique
where ’most similar’ candidates appear in the same group [3]
and this is performed in a mechanized fashion based on the
attributes these candidates possess. Another step is manually
aided interpolation to fully define a cluster’s elements given
its upper and lower bounds. The cluster here represents the
program statements. The attributes suggested in this paper are
a recommendation and can be modified to suit the needs of
the environment. They should however should contain enough
information to differentiate between dissimilar clusters based
on their attributes. This will become clearer with a case study
presented towards the end of this paper.

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 3 - YEAR 200986 ISSN: 1690-4524



Fig. 1. Sample Provenance Network Instance

II. PROCESS COMPONENTS

The Provenance Network is based on the concept of estab-
lishing a traceable path of the usage in the application domain
during the testing phases. Think of it as an electronic notebook
[4] which provides an automated mechanism for recording
the usage patterns after classification and filtering of noise.
This kind of setup becomes critical when a distributed or
shared environment is used in a process [4][5]. The network
is built during the testing phases and later used to govern
legal usage patterns for the system in its live operational
environment. The network is modeled in the form of a tree
(Fig.1). The nodes are program statements which could be
potentially vulnerable to malicious intent. Legitimate examples
of this could be expressions which use externally acquired
variable values, memory allocation or handling procedures,
statements which read, write, update, modify, delete external
data entities, statements which deal with network or I/O
ports, deal with security related issues such as authentication,
publish or retrieve values to or from a web interface, run or
relate to native OS systems commands or directory structures,
compete for resource allocation etc. In case there exists an
uncertainty on which statements to select, considering the
entire program will also produce the same results but with
a less optimized performance. The nodes are connected by
links which in a downward traversal represent the sequence
of statements (nodes) in their order of execution. The links
have weights assigned to them which are integer values. The
likelihood of traversal by a usage pattern which incorporates
the link is directly proportional to the weight of the path
i.e. a higher positive value for a link connecting two nodes
shows that there exist usage patterns with the link in their
path more often than other links. On the other hand a greater
negative value indicates an identified threat or vulnerability
in the programming confirmed by a greater number of usage

patterns which identified the hazard. Please note that we will
only concentrate on the identification of vulnerabilities and
not on correctional procedures, therefore we will assume that
the vulnerabilities remain within the system after installation.
The other components required to implement the provenance
oriented vulnerability model are the modified unsupervised
attribute based clustering procedure and an assisted interpo-
lation engine. As mentioned before, every node contains a
set of attributes. Since the set of nodes represent expressions
or program statements, attributes are naturally defined at the
same granularity level. Also the characteristics elicited could
be (should be) hierarchical for a better understanding of the
attribute composition. A key point which we consider most
important to cluster statements is the ’expanded form’ of the
statement. This means that the expressions or statements which
have notational variables or syntactical constructs which take
form during runtime have to be captured for clustering analysis
at runtime itself. This ensures that the clustering is based on
real instances of those attributes and not just abstract ranges
of usage. A simplified example of this could be considering
the values of an integer variable type that is actually recorded
and combined with an integer based Boundary Value Analysis
[10] for clustering and test cases instead of the latter only.
Even within the testing phase, the sources of the boundary
values, real values and potential security threat inputs act as
different sets of ’testers’. Other attributes such as relative stack
position, timestamps, recursion calls etc. can be part of an the
attribute based clustering scheme. The assisted interpolation
engine helps generate missing values to fully populate a
cluster after it has been identified by a union of boundary
and real instance values. The engine uses various techniques
to enumerate all discrete values which can exist in a cluster
and requires minimal manual intervention to do so. Fully
automated engines are however not recommended until some

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 3 - YEAR 2009 87ISSN: 1690-4524



maturity in the process is acquired such that all types of state-
ments can be handled for interpolation. However to achieve
this maturity, it is advised that that an interpolation repository
be maintained which has an effective expression analysis and
parsing scheme in place. A sample of expected results from
such an interpolation are shown in the case study and judging
by the customized instances (and their prospective values), an
interpolation scheme can be devised by the user. This however
can also be done manually by explicit specification of the
range of acceptable or expected values and some interpolated
instances in that range. A Provenance Network’s instance is
presented in Figure 1. The cluster names are generic for the
purpose of a universal explanation of concepts. Consider the
example to be a sub-network of a bigger Provenance Network.
Cluster ’1’ represents the entry point for this partition. As can
be seen from Figure 2, cluster formation is based on attributes
of individual cluster instances. A clustering algorithm is used
to execute the formation, preceding which a comparison scale
based on the instance characteristics is devised (either empir-
ically or heuristically) to ensure a fair comparison between
the candidates or instance value. Another point to note is that
though trees are conventionally used to represent hierarchical
structures, the nodes here represent statements connected in
the order of a top-down program flow. The attributes can
be represented in a hierarchical structure as this facilitates a
better understanding of the comparison algorithm to be used
(Fig. 2). The Interpolation Engine executes each cluster to
fully populate a Kleen’s clousure for that instance.A usage
pattern here is defined as a distinct path from one cluster to
another. A recorded pattern thus satisfies all the intermediate
transitions (legal known,illegal known or illegal unknown). An
example should clarify this further. Let us suppose there exists
a Usage Pattern recorded as UP1−5=Clusters{1,2,5A}. Thus
the existence of expanded expressions of statements 2 and 5
which satisfy clustering conditions 2 and 5A respectively is
confirmed. If we consider single sequential transition usage
patterns then UP1−2={1,2} transition between statement 1
and 2 is represented by clustering condition 2. Similarly
there exists another usage pattern UP2−5={2,5A} where the
transition is between statements 2 and 5 is also caused by
an attribute based validation criteria of clustering specified in
condition set 5A. Now let us consider the a use case [11] where
the usage path takes half of UP (i.e. UP1−2) by transforming
statement 2 into cluster 2 but then it executes an attempt to
exploit a known security vulnerability in statement 5 by the
metamorphosis of the statement into cluster 5c instead of the
normal usage pattern 5a. Since 5c was a known vulnerability
which was uncovered and added to the provenance networks,
it is easy to capture and prevent its execution. Now consider
statement 5’s transformation at runtime to an expression which
exploits the vulnerability in it and is unknown to us. However
the clustering algorithm is neutral to specificities of exploits
and detects any attribute changes to form a new cluster
altogether. As long as the metamorphosis of statement 5
doesn’t match any existing cluster, a new cluster called 5D
is formed to classify the attributes of the expanded expression

as an unknown exploit or an untested expression - either way,
an illegal unknown expression is prohibited from execution.

III. USAGE PATTERNS

There are three distinctive disadvantages to this approach.
First and the perhaps the most trivial of the three is the
incorrect classification of untested expression patterns (i.e.
clusters) as a new illegal one. This can be solved by ensuring
a rigorous testing procedure which incorporates all patterns (if
not all instances of the pattern) for each expression specific
to the application domain. A counter logic to this is if there
is a specific range or type of expression we have not tested,
then it is best to prevent its execution in a live environment
until sufficient test coverage has been achieved (with the
help of feedback logs and post installation tests). The second
disadvantage is the classification of a known vulnerability as a
known legal expression. The strength of the model lies in the
fact that both solutions are known and therefore fine tuning
of the classification should be able to differentiate them. Last
and perhaps the only relevant drawback is the identification
of an unknown vulnerability as a known legal expression. A
possible solution to this is to construct the patterns for the legal
expressions as tight as possible to ensure minimal room for
unwarranted use. A general solution to all of the above and to
ensure maximum probability of a vulnerability being caught
is to study all the newly discovered unknown vulnerability
clusters and classify them as legal or illegal in a timely
manner, to update the usage network.The provenance network
based security model (Fig. 3) begins with usage testing by
the developer group. The choices of Usage Patterns this group
makes will initiate the construction of the provenance network.
There is also the assumption that the developers will test and
use the system in accordance to the specifications, which is
a formal document produced in the lifecycle and is closest
to the funct ional (and non-functional) requirements expected
by the user. Therefore the weight assigned to the links (i.e.
conditions which lead to the formation of different clusters
for a statement) will be highest when the developer group
creates or reinforces it by exercising the path one or more
times to reach the common usage points in the program
flow. This weight is common for all developer actions and
is proportionally higher to the other single action weights of
the non-developer groups which test the system afterwards.
Assigning weights to links will not have any impact on the
binary decisions of whether to execute a certain link or not.
A positive value will indicate execution (legal expressions)
and a negative value will prevent the same (illegal known
expressions). Execution is also prevented for a zero value
link (discovered unknown illegal expression) till the trust on
that link is ascertained at a later stage through testing. The
values on the link only play a part in establishing trust on
its usage. Thus higher the value on a link, higher the trust.
The only links we don’t know much about are the links which
represent unknown expressions and are therefore of zero value.
We prefer to treat them as unsafe, unnecessary or untested thus
prevent execution.

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 3 - YEAR 200988 ISSN: 1690-4524



Fig. 2. Clustering for Statement No5

IV. PROCESS FLOW

The second partition of the testing phase is repeating the
usage based testing of the system to develop the provenance
network further. This time it’s done by a closed user group
and under supervision. The group may perform the tests
from various perspectives [12] to bring out Usage Patterns
of different sets of target audiences for the system. There is
also the option of forming ’n’ teams [13] and performing a
specialized role such as end user, security expert, maintenance
engineers or QA personnel which develop the provenance
network further on (from where the developers left off). A
point to note here is that theoretically the provenance network
can never achieve a universal completion of all possible usage.
The idea is to reduce the number of unknown expressions
despite the fact that we should be able to handle them given
their unique clustering signature. The next phase of testing
is performed by a larger tester group such as an Alpha or
Beta testing. Feedback from this sub-phase should be most
helpful to form new cluster nodes or links and reaffirm the
ones already made. Another aspect of this form of testing is
that its probably the closest and therefore the last stage of
testing before final deployment. Therefore fine tuning cluster
expression recognition techniques are performed in a decisive
and extensive manner during this sub-phase. The three sub-
phases of testing are complete after this and the network can
be frozen for a live environment usage hereafter. The final
Provenance network will thus not only tell us what to run and
what not to but should also give us a quantified comparison
of trust in a specific usage pattern. The idea is to bu

V. CASE STUDY

We will look at a sample clustering procedure with real
instances of input for a potential SQL injection attack. Before
we proceed any further, a few points should be noted. The
cluster scheme represented is only a subset of a much larger

and eventually mature scheme that can be devised for a
real provenance network. The number and type of attributes
considered here might not be optimum and fine tuning will
require better classification schemes. The sample taken here
is a set of ten expanded statements whereas in a real system
there would be many more i.e. the number (and thus the
weight) of patterns which represent normal and intended usage
will be much higher for complex provenance networks. The
network’s ability to capture unknown patterns depends on its
ability to understand the known patterns very precisely. The
example (Fig. 4) represents a sample of Java code which is
susceptible to an SQL injection attack. Though this kind of
threat can be neutralized using regular expressions, the idea is
to build a generic pattern sensitive infrastructure which cannot
only go beyond a specific attack type but also tackle ones
we do not know enough (or anything) about. As mentioned
before, while constructing the network we have an option to
either consider all statements or only those which could have
a security impact. This is an example of a statement from the
latter kind’s set. The table represents ten instances of expanded
expressions at runtime values provided in ten distinct test

jb

Fig. 3. Progression Pyramid

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 3 - YEAR 2009 89ISSN: 1690-4524



Fig. 4. Case Study

cases. To simplify the process , we have omitted the inclusion
of groups and corresponding weights to form links between the
clusters. If observed carefully, one will note that the statement
prone to the attack is similar in all instances at runtime minus
the user input. Thus it makes logical sense to analyze the
user inputs for variables ’oldName’ and ’newName’ only.
The table represents ten such values. Cluster ’1’ identifies all
input with two tokens of ’String’ type each and no special
characters or delimiters. The upper and lower bounds on the
string sizes will be six and twelve characters respectively.
Do note that boundary value analysis [10] and a dramatic
increase in the number of times this cluster is tested will
identify a more truthful pair of boundaries. An example of
how this technique can be generic is that in an extensive
testing scheme the boundaries should incorporate all ’realistic’
values. Thus a potential buffer overflow attack expression will
be recognized as a new cluster and prevented from execution.
Cluster ’2’ on the other hand identifies four tokens of ’String’
type with an ’OR’ delimiter. Suppose while testing this is
declared legal and using the interpolation engine any number
of ’OR’ instances are declared legal with alternating unique
values. Thus the network identifies this as a query terminates
the first and only intended query and starts a new one to
remove an entire table from the database). However the change
in pattern with the inflation of the size and the presence of a
new type of special character makes the algorithm suspicious
enough to classify this in a new cluster. The cluster may
not essentially be an exploit in reality but is marked as an
illegal expression and prevented from being executed. Cluster
’5’ can be further analyzed in the post installation feedback
logs and classified as a known attack in the evolution of the
provenance network. The use of provenance network is thus
heavily dependent on its semantic depth and scale. The more
the number of test cases, the more fine tuned the network
becomes for the system. An automated infrastructure such as
the one mentioned above should ensure the capture of relevant
elements at the right granularity. Not only does it permit us
to run the system in a tried and tested set of channels but

it also generates confidence levels in system components. It
also indicates when the testing of a system should cease.
When the network stops growing and all of cluster recognition
becomes a redundant exercise then it can be safely assumed
that almost all uses of the system are tested and documented
to tally against in an installed environment. The results from
the examples indicate that the maturity of the network and all
supporting components is critical in this technique. Given the
above infrastructure, provenance networks of usage formed
during the various testing phases could become critical in
future vulnerability prevention and discovery.

ACKNOWLEDGMENT

The authors would like to thank Dr. Edward B. Allen for
his continuous guidance during the class ’CSE 8990 Secure
Coding - Spring 2007’ at the Department of Computer Science
and Engineering, Mississippi State University. I would also
like to thank the GeoResource Institute for its support in this
endeavor. This research was supported in part by the Applied
Sciences Program of the National Aeronautical and Space
Administration via the Mississippi Research Consortium grant
USMMRCSSC1216200565D.

REFERENCES

[1] G. McGraw and J. Viega, Building Secure Software: How to Avoid
Security Problems the Right Way, Addison-Wesley Professional, Boston,
MA, Sep 2005.

[2] N. Aamir and A. Pervaiz, Study of Data Provenance and Annotation
Model for Information Reliability Suggested for Pathological Laboratory
Environment in Pakistan, Proceedings of the First International Confer-
ence on Information and Communication Technologies, Karachi, Pakistan,
Aug. 2005.

[3] A. Wai-Ho, C.C. Keith, K.C. Andrew and W. Yang, Supporting multi-
perspective requirements engineering, Attribute Clustering for Grouping,
Selection, and Classification of Gene Expression Data, Issue 2, vol. 2,
Apr. 2005.

[4] T. Talbott, M. Peterson, J. Schwidder and J.D. Myers, “Requirements for
Requirements Engineering Technique,” Adapting the electronic laboratory
notebook for the semantic era, Proceedings on the 2005 International
Symposium on Collaborative Technologies and Systems, Saint Louis,
Missouri, May. 2005.

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 3 - YEAR 200990 ISSN: 1690-4524



[5] S. Rajbhandari and D.W. Walker, Incorporating Provenance in Service
Oriented Architecture, International Conference on Next Generation Web
Services Practices, Seoul, Korea, Jul. 2006.

[6] P. Devanbu and S. Stubblebine, Software Engineering for security: a
Roadmap, Proceedings of the Conference on The Future of Software
Engineering, Limerick, Ireland, Jun. 2000,

[7] M.D. Bryans, Security Engineering in an Evolutionary Acquisition Envi-
ronment, Proceedings of the 1998 workshop on New security paradigms,
Charlottesvillage VA, Sep. 1998,

[8] S. Munroe, S. Miles, L. Moreau, J. Salceda, New architectural paradigms:
PrIMe: a software engineering methodology for developing provenance-
aware applications, Proceedings of the 6th international workshop on
Software engineering and middleware, Portland, Oregon, Nov. 2006.

[9] R. Bose and J.Frew, Lineage Retrieval for Scientific Data Processing: A
Survey, ACM Computing Surveys, issue 1, vol. 37, Mar. 2005,

[10] M. Ramachandran, Testing Components Using Boundary Value Analysis,
Proceedings on the 29th EuroMicro Conference, Belek-Antalya, Turkey,
Belek-Antalya, Sep. 2003.

[11] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd Edition, Addison-Wesley Professional, Boston
MA, Sep. 2003.

[12] V. Basili, F. Schul and I. Rus, How Perspective Based Reading can
Improve Requirements Inspection, IEEE Computer, issue 7 vol. 33, July
2000, pp.73 - 79

[13] E.H. Sibley and E. Editor, N-Fold Inspection, a Requirements Analysis
Technique, Communications of the ACM, issue 2, vol. 33, Feb. 1990

[14] A. Thakur, R. Vaughn and V. Anantharaj, On the Same Page : Building
Stakeholder Consensus on Requirements, Common Ground Publishing,
Design Principles and Practices: An International Journal, 2008

[15] O. Laitenberger, K. El Emam and T.G. Harbich, An internally replicated
quasi-experimental comparison of checklist and perspective based read-
ing of code documents, IEEE Computing, IEEE Transactions on Software
Engineering, Volume 25, Issue 5, pp. 387-421, May 2001

SYSTEMICS, CYBERNETICS AND INFORMATICS        VOLUME 7 - NUMBER 3 - YEAR 2009 91ISSN: 1690-4524


	KS891IU

