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ABSTRACT 

 
The extensive use of energy generation processes presents a 
severe challenge to the environment and makes indispensable to 
focus the research on the maximization of the energy efficiency 
and minimization of environmental impact like NOx and CO 
emissions. The proposed idea describes an approach, based on 
an artificial life environment, for on-line optimization of 
complex processes for energy production. Such an approach is 
based on the evolutionary control methodology which, by 
emulating the mechanism of the biological evolution, composes 
the capability of sophisticated models with the continuous 
learning. In order to work with MSWC (Municipal Solid Waste 
Combustion) it was necessary to improve the stability of the 
optimizer to obtain a good compromise between stability and 
reactivity. In this way, a specific MSWI performance function 
has been properly defined in order to quantitatively characterize 
the current status of the process. The evolutionary control 
approach has been successfully tested on a MSWC simulator 
and subsequently installed on a real MWSC plant which 
produce electricity and heat for a small Italian town (Ferrara). 
The paper reports the first promising experimental tests on the 
real plant for optimization of energetic efficiency and pollutant 
emission reduction.  
 
Keywords: Evolutionary control, on-line optimization, artificial 
life, waste incinerator, energetic efficiency, emission reduction. 
 
 

1. OPTIMIZATION AND CONTROL OF COMPLEX 
PROCESS FOR ENERGY GENERATION 

 
In problems regarding  the control and optimization of complex 
energy process the not-adaptive approaches are not effective to 
solve the problem over the time. The not-controlled variables, 
the process ageing, the unforeseeable effects caused by human 
errors, the evolution of the process, in most cases require the 
change of the basic model or the objectives, or even the whole 
strategy of the process management. A continuous parametric 
adaptation is necessary but very often is not sufficient, and the 
ability of the system to change its internal structure is needed. In 
short, we need information structures able to evolve in parallel 
to the process we are dealing with. The typical problem with 
respect to the control of thermal processes, and especially in the 
case of municipal solid waste incinerators [1,2], are the 
continuously changing fuel composition and the increasing 
complexity of a complete installation. These kind of process 
burns solid waste with a mixed and variable composition, 
produces water steam to generate electrical power and finally it 
is often connected with remote heating for public buildings. For 
these capability of energy recovery, they are considered in a 
similar value to the renewable energy source. These complex 
production networks, together with the strong non-linearities in 

the process itself, have the result that classical control strategies 
are no longer effective. Moreover, model based approaches are 
difficult because of the impossibility to model the process and 
in general to measure all the variables influencing the process.  
 
 

2. THE EVOLUTIONARY CONTROL 
 
In this paper an approach based on an evolutionary 
methodology for on-line optimization is presented [3]. The 
content here discussed concern the main results of the European 
Project NNE5-2001-000141: “Development of Evolutionary 
Control Technology for Sustainable Thermal Processes” 
(ECOTHERM) [4]. The evolutionary model is based on the 
genetic evolution of autonomous agents, which observe the 
consequences on the plant performances of the control actions 
carried out from the operators or by the optimization system 
itself. This continuous learning allows adaptation to time cycles 
(daily, weekly, seasonal) and to aging or modifications of the 
plant.  
The use of an evolutionary approach is connected with non-
stationary processes, missing information and hardness to build 
effective models. The basic features of the methodology we 
propose are: 

• no intensive pre-modeling (progressive training 
directly from the measurements) ; 

• following of the process evolution. 
The basic concept consists in the implementation of an artificial 
environment that lives in parallel to the process and that 
asynchronously communicate with it, in order to dynamically 
optimize it. We suppose to always measure from the process its 
current regulations and a quality index called process 
performance in the following. In the more general approach the 
information about the optimal operation point produced by the 
evolutionary optimizer is supplied to a control system which 
should manage the regulations in order to reach the optimal 
point identified by the evolutionary optimizer [4]. This control 
system is not simple to obtain in case of MSWC process 
because of the difficulty to model the process [1]. On the other 
hand, the evolutionary approach gives some limited information 
about process modeling. For this reason our approach has to 
include some aspects of control directly in the optimization 
system. Later in the paper, we will discuss the limits of this 
choice concerning the experiments in a real process. 
 
The architecture 
The main blocks (fig.1) of the optimization architecture are the 
artificial life environment (ALIFE), the performance 
measurement and the performance estimation.  
The first one is an artificial life environment composed by a 
population of particles (called individuals in the following) 
which represent solutions. A solution is an operational state of 
the process that identifies a vector of set points for the 
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regulations controller. As it will be described in the next 
paragraph, on the basis of such an information, ALIFE manages 
the artificial environment and selects the best solution for the 
current state in order to drive the process toward optimal 
conditions. 
The other two modules provide a value which represents a 
judgment of quality (performance) associated to a specific 
solution. The difference between the two above-mentioned 
blocks are summarized by following observations.  
The input of the performance measurement block are the   
variables measured from the process. It computes the 
performance using an arbitrary definition representing the goal 
of the process managers (high production, energetic efficiency, 
low emissions, stability, constraints related to laws or process 
critical situation....). Most of these variables are outputs of the 
process (production, emissions, temperatures, etc..) and the 
performance reflects practical and legal rules, which are 
supposed to be respected in order to obtain a good or an optimal 
management. In the case of incinerators, the performance value 
can be defined by a multi-objective fuzzy function that 
combines several membership functions related to different 
objectives. Since the computation is derived directly by the 
measurements this value monitors only the current state of the 
process. 
At the contrary, the performance estimation block provides an 
estimation of the performance by taking as inputs a hypothesis 
of regulations. This hypothesis does not correspond to the 
present state but is only a candidate for the next control point to 
be applied in the process. In this case we have developed a 
simple structure which has the characteristics of continuously 
updating the relation between regulations and performance 
during the evolution of the plant.  

 
 Figure 1. Evolutionary control approach scheme 

 
Each time a new measurement is acquired, the corresponding 
performance measurement is calculated, the performance 
estimation model is updated and a new individual, representing 
the new observed process condition, is inserted in the artificial 
life environment. In this way the system is continuously 
updated.  
 
The artificial life optimization approach 
The main characteristics of evolutionary methods for problems 
optimization (genetic algorithms [5], ant systems [6], particle 
swarm optimization [7]) is a research strategy based on a 
population of evolving solutions generated directly in the n-
dimensional parameter’s space. In this way, the interaction 
dynamics between the solutions is defined in this space. It 
consists in reproduction (crossover and mutation) and selection 
for genetic approaches and coordinated swarm movement in the 
case of swarm optimization.  

In our approach we are exploring the possibility to use a 
supplemental two-dimensional physical space to manage 
solution’s interaction. The introduction of the physical space is 
inspired to the metaphor of the organisms carrying information 
(solutions) living and interacting in an environment (physical 
space). This is the typical situation for the artificial life 
simulation environments [8]. All the interaction dynamics are 
contextually located in the physical space. Reproduction 
produces child solutions located in physical cells adjacent to the 
parent solutions; the interaction between two solutions,  
regulating competition and selection, are activated when two 
solutions meet in the physical space. 
Using this approach, a solution has a preferential high 
probability of interaction in the near local space. When the 
density of solutions in the physical space is high, the 
preferential  local interaction pushes the population to form 
local groups producing a sort of local niches of evolution. 
Typically, the individuals located at the center of these jammed 
groups push up the evolution and individuals located at the 
boundary of these groups travel around producing a cross-
fertilization between several niches. This mechanism is the idea 
we are trying to introduce in order to give the optimization 
population the possibility to continuously sustain a biodiversity 
of evolved solutions. This aspect is very important in 
continuous evolving systems where the fitness landscape can 
rapidly change in time and the system has to react (adapt) in 
short time finding a new effective range of optimal solutions to 
promote.  
At this stage of research, it is difficult for us quantify these 
mechanisms and establish with accuracy, how much the 
physical space and evolution niches add to the ability of the 
system to adapt in the time. Deeper theoretical studies will be 
necessary in the future to better explore and quantify the effects 
physical space interaction dynamics. 
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The ALIFE environment  
In this paragraph we will briefly describe the artificial life 
environment for the dynamic selection of the best control 
configurations. This environment derives from the Artificial 
Society approach illustrated in Annunziato et al. [9]. This 
approach has been tested for the optimization of a static well-
known problem, the Traveling Salesman Problem, in which it 
has reached the optimal value for the 30, 50 and 75 town. 
Recently has been compared with several other approaches 
(classical and evolutionary) for neural network training giving 
very promising results [10]. 
The ALIFE context is a two-dimensional lattice divided in nxn 
cells initially empty at the beginning of the evolution. In the 
metaphor of the artificial life, this lattice represents a flat 
physical space where the artificial individuals can move around. 
During the single iteration (life cycle) all the living individuals 
move in the space, eventually interact with other individuals, 
and eventually reproduce generating another individual in 
haploid reproduction.  
Every m life cycles (m = 10-1000) we apply an access to the 
process data acquisition to acquire new data (measurement 
cycle) and compute the current process performance. At every 
cycle of measurement, a new individual is built including in its 
structure measures, current regulations and current performance. 
Finally we insert this new individual in the environment with a 
starting value of energy.  
Three blocks compose the data structure of the individual. The 
first one includes a collection of behavioral parameters 
regarding dynamics, reproduction and interaction. These 
parameters don't change during the individual’s life. The second 
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block includes a series of parameters related to the process to 
control: the regulation and measurement values; these variables 
don't change during the individual’s life too. The last block 
includes  dynamics parameters (position, direction, curvature), 
age, energy and performance value. These parameters may 
change during the individual’s life, due to the current behavior 
of the individual or to the process evolutions. The performance 
is continuously updated using an external problem-specific 
model (described in section 3). This is due to the possible 
changes in the unknown variables of the process not represented 
in the genotype.  
 

Reproduction, Interaction and Selection. A haploid 
reproduction model has been implemented for the individual 
reproduction; self-reproduction can occur only if the individual 
has enough energy and owing to a positive probabilistic test. 
The genotype of the child individual  corresponds to a 
probabilistic-random mutation of the parent’s solution 
(regulation set points) in relation to a mutation average rate and 
mutation maximum amplitude.  
The application of the mutation mechanism on the genotype can 
change radically the individual quality and it can change 
substantially the optimization strategy over time and situations. 
When the system is far from the optimum, high values for 
mutation amplitude are necessary to speed up the environment 
to recovery the performance. When the system is close to the 
optimal point, low values are necessary to locate the optimal 
maximum. For this reason we adopt adaptive value of the 
mutation amplitude with respect to the performance value. 
During a reproduction, we mutate the regulations, therefore we 
don't know the real performance of the child. For  this reason 
we need the performance estimation model (section 3) to 
associate the estimated performance to the new individual.  
When two individuals collide each other, a fight occurs. The 
winner is the individual characterized by a greater value of 
performance. The loser individual transfers a part of its energy 
to the winner, which becomes stronger and increases the 
probability to meet other individuals and to fight again pushing 
selection mechanisms of the best individuals in terms of 
performances. If an individual reduces its energy under a 
threshold it cannot reproduce anymore. If it reaches the null 
energy it is considered dead and removed by the environment. 
Finally, at every measurement cycle the individual who has the 
best performance is selected and the corresponding solution is  
suggested as the optimal current solution for the process 
operation. 
 
 

3. THE PERFORMANCE DEFINITION 
 

The definition of this index is obtained by means a problem 
specific multi-objective approach and it represents the global 
formalization of the goals we want to fulfill. The measurement 
performance module is aimed to provide the evolutionary 
controller with a global index of the performance, which is used 
to carry out the individual’s selection. Such a value is defined 
out of the control context and it constitutes an immediate and 
powerful instrument to globally monitor the good operation of 
plant providing a global index in the range (0,1). 
In order to properly compose the different variables and criteria 
the fuzzy sets methodology has been chosen because it allows 
the operator transparency, it provides a well established 
theoretical framework to solve this kind of problems and it is 
highly flexible because it can be transported to different plants 
with little effort.   

 
Basic fuzzy sets 
For any process variables, which influence the effectiveness of 
the incinerator management, it has been defined a fuzzy set and 
a membership function. As an example, we fix the 
characteristics of steam flow rate according the following 
natural phrase: 
 
Fuzzy set : “Average steam flow rate ‘good’ ” 
 

This fuzzy set is aimed 
to model the average 
steam flow rate (SFR) 
‘goodness’. SFR is 
considered good (= 1) if 
the steam average of the 
last n seconds, where n 
is to be properly set, is 
within the interval [b, c]. 
The number n can be 

considered as the integration time in order to avoid statistical 
fluctuations. The constraint is that a<SFR<d, so values outside 
this range are considered not acceptable and therefore not 
belonging to the fuzzy set (= 0). The membership function of 
this fuzzy set will be trapezoidal shaped and will have as 
argument the real average SFR values.   

 

a       b           c       d

µ(x)

1

a       b           c       d

µ(x)

1

Analogue fuzzy sets are defined for the other important 
parameters that contribute to the good operation of the plant. 
The shape of the membership function (i.e. trapezoidal, 
sigmoidal, gaussian) changes according to the different 
objectives to be fulfilled and suggested by the process experts.   
 
Global fitness definition 
The main idea driving the definition of the fitness criterion is 
that of having a flexible function capable to manage different 
criteria. In particular the fitness function will be the composition 
of two fuzzy sets describing two different requirements: 
optimality and penalty. The difference between the two term lies 
in the composition of the previously defined fuzzy sets. 
The membership function of the optimality type is defined as 
the weighted sum of the membership functions representing the 
process production we want maximize. Logically this operator 
represents a composition standing between AND/OR.  
The penalty term concerns the approach of conditions close to 
the constraints violation or critical for the process maintenance 
or safety or critical for pollutant emissions. The resulting fuzzy 
set will be logically defined as the AND composition of the 
basic fuzzy sets. 
The final fuzzy set describing the global fitness is the weighted 
difference of the last two fuzzy sets. Weights will be defined by 
the developer according to the custom requirements depending 
on the relative importance of the two criteria.   
 

Fuzzy set F1 :  “Performance optimal”. This fuzzy 
set is intended to describe a general evaluation of the 
performance giving each variable a different weight 
(importance). This fuzzy set is not meant to check the 
constraints, if one variable is out of range then it will not 
severely affect this evaluation.   
 
F1 = X1⊕X2⊕….XN
µF1(x1,x2..xN) = ∑wiµi (xi) ; µF1(x1,x2..xN) ∈ℜ, µF1(x1,x2..xN) 
∈[0,1]; wi ∈ℜ, wi∈[0,1], ∑wi=1       (1) 
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Fuzzy set F2 : “Constraints OK”. This fuzzy set is 
aimed to strictly satisfy all constraints. If one variable is out of 
range then it will severely affect this evaluation.    
 
F2 = X1∧X2∧….XN
µF2(x1,x2..xN) = ∏µi(xi), µF2(x1,x2..xN) = MIN(µi(xi));  
µ F2(x1,x2..xN) ∈ℜ, µ F2(x1,x2..xN) ∈[0,1]      (2) 
 

Fuzzy set F :  “Fitness good”. This fuzzy set 
describes the global performance of the system as a compromise 
between the two criteria. It allows a different weight to each of 
them in such a way that it is possible to stress which of the two 
has to be considered more important. This definition allows a 
sensitivity recovery of the out of range variables. At first the 
weight is static, once defined it does not change in time, but in 
future it can be considered dynamic in the sense it changes 
according to particular rules. 
 
F = F1⊕F2
µF(x1,x2..xN) = wµF1(x1,x2..xN) + w(µF2(x1,x2..xN) –1) 
µF(x1,x2..xN) ∈ℜ, µF(x1,x2..xN) ∈[0,1]; w ∈ℜ, w∈[0,1]          (3) 
 
In the case of the application over real MSWI Italian plant 
(AGEA, Ferrara) the variables considered and the correspondent 
basic fuzzy sets chosen together the plant engineers according 
to normative requirements and management ‘s rules are: 
 

Fuzzy set 
X1 : “steam flow rate ‘good’ ” 
X2 : “O2 ‘good’ ” 
X3 : “temperature ‘good’ ” 
X4 : “NOx ‘low’ ” 
X5 : “CO ‘low’ ” 
X6 : “flue gas rate ‘low’  
X7 : “waste flow rate ‘high’ ” 
X8 : “pressure drop furnace-chimney ‘good’ ” 

Table 1.Definition of fuzzy sets. 
 
The  definitions of the fuzzy sets ‘optimal’ (2) and ‘constraints’ 
(3) are therefore : 
 
F1 = X1            (4)
F2 = X2∧X3∧X4∧ X5∧X6∧X7∧X8         (5) 
 
In order to validate the performance model a consistence 
campaign of tests at the AGEA plant was successfully carried 
out. The result shown good margins to increase the performance 
value. Most of the management problems were in the difficulty 
to maintain the process in a condition satisfying all the 
constraints. In some cases it generated the occurrence of a fast 
period of ageing of some process structures inducing high costs 
of maintenance and plant instability. 

 
 

4. THE PERFORMANCE ESTIMATION 
 
In the section 2 we anticipated the characteristics of this block 
developed to predict the value of performance related to a 
hypothetical set of regulations, representing the information 
block of new individuals, born in the ALIFE environment from 
the reproduction through the mutation mechanism.  
The performance estimation is based on a performance map. 
This is a n-dimensional discretized matrix, where n is the 
number of control parameters (five for the MWSC process). At 

every measurement cycle, the performance of the current state 
of the plant calculated by the above-mentioned performance 
measurement module, is stored in the map, in the cell which the 
discretization of the parameter set refers to. The map 
discretization can be different in the several dimensions 
referring to the relative importance of each regulation 
parameter. The map has a twofold task: on one hand it is the 
long-term memory of the control system; on the other hand, it 
allows the continuous updating of the reference model and so it 
lets the control system itself to evolve in parallel with the 
process. So it roughly represents an internal knowledge of the 
real system. The process of updating of the performance map is 
fairly simple. When the performance value of an empty cell is 
required by the new agents, a linear interpolation algorithm is 
utilized. This procedure leaves the map in a incoherent 
situation: some zones, typically at high performance, are 
frequently  refreshed and characterized by high accuracy; other 
zones are rarely refreshed and large errors can arise in the 
performance estimation. For these reasons the performance map 
cannot be considered as a model of the process but only a way 
to organize the memory accumulation of the system. 
By a general point of view, the performance map represents 
only a part of the system memory and a systematic scansion of 
the whole map to find the best location is not efficient because 
of the large estimation errors in not recently refreshed locations. 
The other fundamental component of the memory of the system 
is represented by the genotypes of the individuals which are 
currently living in the alife environment. Their dynamics 
determines the zones of the map that have to be explored and 
frequently refreshed to maximize the efficiency of the system 
information.  
We have compared this simple approach with another more 
complex approach founded on a predictive model of the 
performance trough continuous training neural networks [11]. In 
general the predictive model of the performance is resulted 
useful when the frequency of external disturbances is low and 
their changes doesn’t not affect very much the model efficiency. 
In the other more general cases, like in real plant cases, the 
disadvantage of to use a predictive model is a low ability to 
locally adapt to the new conditions and the result is a large 
temporal inertia to react to process unknown disturbances. For 
this reason, in the MSWI problem we decided to use exclusively 
a performance map. 
 
 

5. SIMULATION RESULTS 
 
In order to test the control/optimization architecture, a wide 
experimentation has been carried out on a mathematical 
simulator which reproduce the MSWC behavior developed by 
TNO (Netherlands) in the context of the Ecotherm EU Project. 
Basic description of the MSWC modeling are in [1]. The 
simulator is able to reproduce the MSWC dynamics and has 
been calibrated using the data coming from the real MSWI 
process where subsequently the system has been installed. The 
inertial time of the MSWC process ranges from 30 seconds to 
20 minutes depending by the regulation we change. 
In respect to the process experiments, the simulator experiment 
is more simple for several reasons. The first one is that we are 
able to easily understand the optimization results because we 
know all the system variables including fuel composition and 
water content in the fuel which are unknown disturbances in the 
real process. The second one is that the simulator does not take 
into account three-dimensional local stochastic effects in the 
combustion process which can affect very much the real system 
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in term of a general unpredictable inertial behavior. The third 
one is that we suppose have no errors in the simulator sensor 
measurements. For all these reasons the goal of the simulator 
tests is the efficiency of the optimizer algorithm rather than a 
validation over the real MSWC process. 
In the experiment discussed in the following, the control system 
regulates five variables: primary flow air, secondary flow air, 
air re-circulation valve, grid speed and waste flow. These are 
the main regulations of a grid based MSWC process. In these 
experiments we externally change the fuel composition and 
water content in the same way of the real process but we don’t 
supply these information to the control system in order to 
reproduce all real process complexity and data missing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. On-line optimization of the MSWC simulator (up: 
initial part, bottom: complete experiment) 

 
In fig. 2 a typical simulator experiment of on-line optimization 
is reported. In the plot we show the global performance 
measured  according to the definition reported in section 3. In 
this case we apply the regulation modification only every 30 
minutes (optimization cycle) to avoid transitory effects and the 
experiment corresponds to about 60 days of the real process. 
This preliminary choice is only to allow a good data 
interpretation because the real process requires lower control 
times (1 minute).  
In these experiments the performance map was initially set 
completely empty and no previous memory of the system has 
been considered. The initial part of the experiment shows 
clearly the ability of the alife optimizer to increase gradually the 
performance to the maximum value. It is to take into account 
that the value 1 of the performance is not always reachable but 
it depends on the calorific value of the fuel (fuel composition) 
that in the experiment is continuously changing. The second 
part of the experiment shows that the alife optimizer is able to 
improve the system after sharp disturbance changes but the 
recovery time is not sufficient to avoid large performance falls 
at low values (0.3). The low values peaks of the performance 
are due to the violation of some constraints and they can be 
dangerous for the process safety. These falls are induced by the 
fact that alife, through the reproduction mechanism, tries to 

explore zones never visited in the past, where the estimation 
error in the performance map is very high.   
For these reason we have introduced some modifications in 
respect to the original alife model. The first modification was a 
limitation about reproduction. A child can born only if the 
corresponding cell in the performance map is already visited in 
the past or close to a visited cell. This limitation produce an 
exploration activity of the new solutions which is limited to the 
boundary of the already known zone. This position corresponds 
to longer time of exploration of the solution space but it is 
conservative in respect to the process safety. Furthermore a first 
pre-learning phase has been introduced before to leave the 
control to the artificial life environment.   
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Figure 3. On-line optimization of the MSWC simulator after 
introduction of the boundary exploration  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. On-line optimization of the MSWC simulator over 1 

minute integration time 
 
In fig. 3 the results of these positions for the same experiment is 
shown. In this case the result is considerably improved avoiding 
the large performance falls and speeding up system recovery so 
we definitively apply these modifications.  
Finally, we tried to apply the same optimization using very 
short optimization times in order to verify which is the ability of 
alife to manage and adapt in transient conditions due to the 
process inertia. This last experiment is much more realistic in 
respect to the real process operation. In this experiment we use 
1 minute for optimization/control cycle. In this case the time 
duration of the complete experiment is about 20 process days. 
The results are still good in terms of response time of the alife 
system. Some performance falls (0.4) are still present but the 
time scale now is very short and the performance falls are 
recovered in few minutes. 
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6. REAL FIELD EXPERIMENTS 
 

After the satisfying behavior over the MSWC simulator, we 
have installed the on-line optimization system in a real MSWC 
plant. This is a full scale medium size plant which supplies 
electricity and remote heating to the Ferrara town (Italy). It is 
managed by the AGEA/HERA company which is partner of the 
Ecotherm project. Because of the lack of automatic control due 
to the plant complexity, the regulation set points are ordinarily 
manually managed from the operators.   
In fig. 5 a first preliminary experiment of the real plant on-line 
optimization is reported. The alife optimizer has been activated 
for about 6 hours after the first third of the experiment reported 
in the plot and deactivated in the last part. 
 
 
 
 
 
 
  
 
 

 
 

 
Fig 5: On-line optimization of the MSWC real plant 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6: NOx emission on-line optimization 
 
The results show the trend of about half day of experiments. 
This period is not still enough to give a complete judgment of 
the alife optimizer efficiency but some trend emerge quite 
clearly. The optimizer is able to take the control of the plant and 
also increase the performance of the process. This increase is 
related to the ability of alife to manage the regulation in order to 
better fulfill the process constraints. In the specific experiment 
of fig. 5 alife has increased the secondary air flow rate reducing 
the combustion chamber temperature. This had an effect in the 
reduction of NOx emission as resulted in the plot of fig. 6 
corresponding to the same experiment. Furthermore, the 
management of the regulation carried out by alife seems quite 
more gradual in respect to the ordinary control strategy actuated 
manually by the operators. 
On the base of these first experiments a significant limit seems 
to emerge when the performance value reach very low values 
due to sharp changes in external disturbances like suddenly 
changes in the waste calorific value. In these cases the alife 
optimizer is able to recovery the process but the recovery times 
(10-20 minutes) are not still compatible with plant requirements 
(1-5 minutes). This limit concerns the nature of the current alife 
structure which is an optimizer with some control ability but it 
cannot be considered as a stand alone controller. Future 

directions will focus this limit exploring faster response alife 
environments and/or integration with a controller module. 

 
 

7. CONCLUSIONS 
 
We have described an adaptive technique for on-line  
optimization of complex processes. We based our proposal on 
the development of an artificial environment evolving in 
parallel with the process. Exploiting its characteristics of 
evolution, biodiversity and adaptivity, we succeeded in 
achieving an on-line optimization of the process via a 
continuous learning and updating of its model.  
Such methodology has been applied to improve the 
management of waste incinerators for energy generation. A 
multi-objective approach has been used to define a performance 
index for MSWC plant. The proposed approach is based over a 
fuzzy combination of several objectives of the optimization. A 
unique global index has been obtained to supply the 
evolutionary module. This definition takes into account the 
maximization of the process production (steam) with  respect to 
the constraint in order to have a possibility to recover the 
process towards higher performances. 
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The method has been tested on a process simulator giving 
successful results in optimization and a good process control 
confirming the theoretical efficiency of the method.   
Finally it has been installed on a real plant for field 
experimentation. Only preliminary tests have been carried out 
up to now and only qualitative conclusions are possible. On the 
base of the preliminary data, the system shows a good attitude 
in a continuous compensation of the external unknown 
disturbances gradually increasing performance and pushing the 
process in the full respect of the constraints. Future 
experimental tests are necessary to confirm these results in a 
large confident time period (i.e. months). 
The limit of the method seems to be in the too slow time periods 
in the fast control that is necessary for process recovery after 
fall of performance due to external reasons. Future efforts are 
necessary to explore the possibility to increase the alife 
response time and/or integration with a control system. 
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