
Cost Analysis for Real-time Java Scoped-memory Areas∗

Delvin C. Defoe Rob LeGrand Ron K. Cytron
{dcd2, legrand, cytron}@cse.wustl.edu

Department of Computer Science and Engineering
Washington University

St. Louis, Missouri

Abstract

Java has recently joined C and C++ as a develop-
ment platform for real-time and embedded applica-
tions. Java’s garbage collection, while generally a use-
ful feature, can be problematic for these applications:
garbage collection occurs at unpredictable times and
its latency is typically unbounded. This can compro-
mise necessary real-time guarantees.

To overcome these limitations, the Real-Time for
Java Expert Group (RTJEG) proposed the Real-Time
Specification for Java (RTSJ), which introduced new
memory models and new threads to utilize those mod-
els. One such memory model uses scoped-memory ar-
eas, which work best in the context of a NoHeapReal-
timeThread (NHRT). Although much work has been
done with scoped-memory areas and NHRTs, there is
no system-independent analysis of their costs. In this
article we present an asymptotic analysis for RTSJ
scoped-memory areas and NHRTs.

Keywords: Scoped Memory, Real-Time Java,
Memory Management, Programming Languages, and
Performance Analysis

1 INTRODUCTION

Real-time applications require bounded-time memory-
management performance. Many real-time appli-
cations are written in languages that do not offer
garbage-collection capabilities by default; as such,
these applications do not suffer from the overhead as-
sociated with garbage collection. Since the advent of
Java in 1995 [1, 6], programmers have been exploring
ways to use Java for real-time programming. Java has
become attractive because of its automated memory-
management capabilities and the ease with which it
can be used to construct programs.

Java has become ubiquitous in many programming
environments but not in real-time and embedded en-

∗This work is sponsored in part by DARPA under contract
F33615-00-C-1697, by AFRL under contract PC Z40779, by
Raytheon under subcontract 4400134526, and by the Chancel-
lor’s Graduate Fellowship Program at Washington University.

vironments. To advance the use of Java as a real-time
programming language, the Real-Time for Java Ex-
pert Group (RTJEG) has issued the Real-Time Speci-
fication for Java [3] (RTSJ). The RTSJ provides exten-
sions to Java in support of real-time programming [5]
that do not change the basic structure of the lan-
guage. Instead, they added new class libraries and
Java Virtual Machine (JVM) extensions to the lan-
guage. Compilers that are not optimized to take ad-
vantage of those extensions are not affected by their
addition. Although the RTSJ revises many areas of
the Java programming language, this article focuses
on storage management.

In addition to the heap, where dynamic storage allo-
cation occurs, the RTSJ specifies other memory areas
for dynamic storage allocation. Those memory spaces
are called immortal memory and scoped-memory ar-
eas [3]. Objects allocated in those memory areas are
never subjected to garbage collection although the
garbage collector may scan immortal memory. Ob-
jects in immortal memory are not collected until ex-
ecution of the program completes. They are not col-
lected earlier whether or not there are references to
them. Objects in a scoped-memory area, on the other
hand, are collected en masse when every thread in it
exits that area. Scoped-memory areas are best used
with NoHeapRealtimeThreads (NHRTs) [3].

Use of scoped-memory areas is not without addi-
tional cost or burden. Much work has been done with
scoped-memory areas and NHRTs; however, to the
best of our knowledge, there is no record in the liter-
ature of system-independent cost analysis for scoped-
memory regions with NHRTs. The goal of this arti-
cle is to provide a framework for comparing program-
ming with RTSJ scoped memory to programming with
other memory models, e.g., the heap. While there are
several approaches that can be used to do this com-
parison, we propose a model that employs asymptotic
analysis.

The rest of the paper is organized as follows. Sec-
tion 2 discusses RTSJ’s influence on memory manage-
ment. Sections 3, 4 and 5 provide analysis of scoped-
memory areas. Section 6 offers concluding remarks
and Section 7 acknowledges those who have assisted

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4 ISSN: 1690-4524

in preparation of the final draft of the paper.

2 RTSJ’S MEMORY MANAGEMENT

One of the most interesting features of the RTSJ is
the new memory management model based on scoped-
memory areas (or scopes for short) [7]. This model en-
sures programmers of timely reclamation of memory
and predictable performance. This comes at the cost
of learning an unfamiliar programming model—a re-
strictive model that relies on the use of scopes. These
new scopes were designed to meet two very important
requirements [7]: providing predictable allocation and
deallocation performance, and ensuring that real-time
threads do not block when memory is reclaimed by the
virtual machine.

Figure 1: Scoped-memory single-parent rule. A is the
parent of both B and C

To meet these requirements, the RTSJ ensures that
objects in a scope are not deallocated individually.
Instead, the entire scope is collected en masse when
all thread that have entered the scope have exited the
scope. A scope is a pool of memory from which objects
are allocated. Each scope can be entered by multiple
threads. These threads can allocate objects in the
memory pool and communicate with each other by
shared variables. A new scope can also be instanti-
ated by a thread executing within its current scope.
This is known as the nesting of scopes. Such nesting,
however, is controlled by the order of threads entering
the scopes—see Figure 1. A scope can become the
parent of multiple scopes but no scope is allowed to
have multiple parents.

To take advantage of scopes, the RTSJ defined
a new type of thread called NoHeapRealtimeThread
(NHRT). NHRTs cannot allocate objects in the
garbage-collected heap and they cannot reference ob-
jects in the heap. These constraints were added to
prevent NHRTs from experiencing unbounded delay

due to the locking of heap objects during garbage col-
lection [5]. NHRTs have the highest priority among all
threads and can preempt even the garbage collector.

Table 1 details how objects in certain memory areas
are not allowed to reference objects in other memory
areas. This constraint does not apply only to objects,
but also to threads so that real-time threads do not
block when the JVM reclaims objects.

3 SCOPED-MEMORY ANALYSIS

This section focuses on computing asymptotic bounds
for the RTSJ scoped-memory model when NHRTs are
used. These bounds will give an idea of how expen-
sive it is to execute applications in a scoped-memory
environment. They will also facilitate comparison of
execution in scoped-memory environments with exe-
cution in other memory environments (e.g., the heap).

Asymptotic analysis of scoped memory
We present a model for computing the asymptotic
bounds that follows the steps listed below.

1. Select an abstract data type (ADT) that can hold
an arbitrary number of elements.

2. Define the fundamental operations of the ADT
and provide an interface.

3. Propose at least one implementation for each op-
eration.

4. Adopt methods from Cormen et al. [4] to compute
the worst-case running time for each operation.

5. Perform step 4 for an intermixed sequence of n
operations. This denotes the ADT problem (e.g.,
the stack problem).

6. Repeat step 1.

The input size n for each operation is characterized by
the number of elements in the collection immediately
before the operation is run. Should there be a need to
use a different characterization for the input size of an
operation, one will be provided. The pseudocode pro-
vided for selected operations follows the pseudocode
conventions from Cormen et al. [4]. We apply this
model to solve the problem at hand.

4 STACK ANALYSIS

The stack is the first abstract data type we analyze.
A stack is an ADT that operates on the Last-In-First-
Out (LIFO) principle. One end of a stack, called the
top-of-stack, is used for each stack operation. The
fundamental operations are:

71SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4ISSN: 1690-4524

Objects in Reference to Heap Reference to Immortal Reference to Scoped
Heap Allowed Allowed Not allowed

Immortal Allowed Allowed Not allowed
Scoped Allowed Allowed Allowed if same, outer, or shared scope

Table 1: References between storage areas [3] courtesy of Deters and Cytron [5]. Objects in the heap are allowed to
reference objects in immortal memory, but not objects in scoped memory.

1. IS-EMPTY(S) - an operation that returns the
binary value TRUE if stack S is empty, FALSE
otherwise.

2. PUSH(S, x) - an operation that puts element x
at the top of stack S.

3. POP(S) - an operation that removes the element
at the top of the stack S and returns it. If the
stack is empty the special pointer value NULL is
returned. NULL is used to signify that a pointer
has no target.

Heap implementation
Several data structures, including the singly linked
list, can be used to implement a stack in the heap.
The IS-EMPTY operation checks whether the top-of-
stack points to NULL. The PUSH operation adds a
new element to the top-of-stack, and the POP opera-
tion updates the top-of-stack and returns the topmost
element. Each of these fundamental operations re-
quires T (n) = O(1) time using a singly linked list.

Scoped memory implementation
For a scoped-memory implementation of stack we
make the following assumptions:

1. Each application A that manages a stack S is
fully compliant with the RTSJ.

2. A has a single thread Ta, which is an instance of
RTSJ NHRT.

3. A executes on an RTSJ-compliant JVM.

4. Ta can legally access S and the elements managed
by S.

5. Before an element x is pushed on stack S, a new
scope s must first be instantiated to store x, and
Ta must enter s.

Assumption 5 is relevant for the purpose of com-
plexity analysis. Although we do not suggest one
scope per element for an actual implementation, here
we are concerned about worst-case analysis. Storing a
single element in a scope simplifies analysis and yields
the smallest amount of unnecessarily live storage in
scoped memories for this particular data structure.

Pseudocode and analysis for the fundamental stack
operations follow.

IS-EMPTY: We assume that there is a TOS
field in the current scope that points to the top-of-
stack element. If the TOS field points to the stack
object S, then the application thread Ta is executing
in the scope containing S. Thus, S contains no ele-
ments, so the stack is empty. If c1 is the time required
to execute line 1 of IS-EMPTY then the worst-case
running time of IS-EMPTY is T (n) = c1 = O(1).

IS-EMPTY(S)
1 return TOS = S

Figure 2: Procedure to test if the stack is empty—scoped
memory implementation

PUSH: The PUSH operation depicted in Figure 3
is equivalent to the following sequence of basic oper-
ations performed by the application thread Ta. From
the current scope Ta instantiates a new scope sm. Ta

enters sm then sets the TOS field in sm to point to
element x.

PUSH(S, x)
1 scope← new ScopedMemory(m)
2 enter(scope, Ta)
3 TOS ← x

Figure 3: Procedure to push an element onto the stack—
scoped memory implementation. m ≥ |x|+ |TOS|.

Assuming each line i in PUSH requires ci time for
execution, the worst case execution time for PUSH is
given by T (n) = c1 + c2 + c3 = O(1). The correctness
of this result is based on the fact that each line is
executed once per invocation. Because a scope has
a limited lifetime dictated by the reference count of
threads executing therein, Ta is not allowed to exit
sm. To ensure that Ta keeps sm alive Ta does not
return from the enter() method of line 2 of Figure 3.
Should Ta return from the enter() method, the thread
reference-count of sm would drop to zero, sm would
be collected, and the PUSH operation would fail.

72 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4 ISSN: 1690-4524

POP: The POP operation returns the TOS ele-
ment if one exists, NULL otherwise. Assuming each
line i of the POP operation (Figure 4) requires ci time
to execute, the worst-case execution time for the POP
operation is given as T (n) = O(1).

POP(S)
1 if IS-EMPTY(S)
2 then x← NULL
3 else x← TOS
4 return x

Figure 4: Procedure to pop the topmost element off the
stack—scoped memory implementation

After popping the stack, Ta must return from the
enter() method of line 2 of Figure 3. We assume for
all practical purposes that returning from the enter()
method takes O(1) time. The new top-of-stack be-
comes the TOS element of the parent scope, i.e., the
parent of the scope that contained the popped ele-
ment.

The stack problem
The stack problem is defined as the problem of run-
ning an intermixed sequence of n PUSH and POP op-
erations on a stack instance. We analyze the stack
problem for a singly-linked-list implementation in the
heap and for a scoped-memory implementation of
stack. Let n denote the total number of operations
and let m denote the number of PUSH operations.
The number of POP operations is thus given by n−m
where n − m ≤ m ≤ n. The worst-case running time
for the singly linked list implementation of the stack
problem is computed as

T (n) = Tpush(m) + Tpop(n − m)
= m ∗ c1 + (n − m) ∗ c2

= mc1 + nc2 − mc2

= (c1 − c2)m + c2n

= O(n)

For a scoped-memory implementation the running
time for PUSH or POP is O(1). Thus, the running
time for the stack problem in the context of a scoped
memory implementation is given by T (n) = O(n).

Discussion
The linked-list implementation in the heap yields
T (n) = O(1) worst-case execution time for each stack
operation. The scoped memory implementation also
yields T (n) = O(1) worst-case execution time for
each operation. The stack problem, i.e., the prob-
lem of running an intermixed sequence of n PUSH
and POP operations yields a worst-case running time
of T (n) = O(n) for each implementation, as expected.

Given a particular program that uses a stack, the pro-
grammer can thus choose among these two implemen-
tations.

Although a singly-linked-list implementation works
well in the heap, pointer manipulation can affect the
proportionality constants of the running time for each
operation. Garbage collection can also interfere with
the running times of stack operations if the application
executes in a heap that is subject to garbage collec-
tion.

A scoped-memory implementation, while good in
real-time environments, comes at the cost of learn-
ing a new, restrictive programming model. Real-time
programmers, however, can benefit from the timing
guarantees promised by the RTSJ.

5 QUEUE ANALYSIS

A queue is an ADT that operates on the First-In-
First-Out (FIFO) principle. The fundamental opera-
tions for a queue are:

1. ISQ-EMPTY(Q) - an operation that returns the
binary value TRUE if queue Q is empty, FALSE
otherwise.

2. ENQUEUE(Q, x) - an operation that adds ele-
ment x to the rear of queue Q.

3. DEQUEUE(Q) - an operation that removes the
element at the front of queue Q and returns it. If
the queue is empty, NULL is returned.

Heap implementation
One possible implementation of the queue ADT in the
heap uses a singly linked list data structure with two
special pointers, front and rear. The ISQ-EMPTY
operation checks whether front points to NULL. The
ENQUEUE operation adds a new element to the rear
end of the linked list and updates the rear pointer.
The DEQUEUE operation updates the front pointer
and returns the element that was at the front of the
linked list. Each of these fundamental operations
takes time T (n) = O(1).

Scoped-memory implementation
Consider execution of an application A that manages
a queue instance in an RTSJ scoped-memory envi-
ronment. Efficient execution of A depends on proper
management of memory, which is a limited resource.
Assume A uses a stack of scoped-memory instances
to manage the queue. Assume also, for the purpose
of worst-case analysis, that a queue element resides
in its own scope when added to the queue. A service
stack with its own NHRT T1 is used to facilitate the
ENQUEUE operation. See Figure 5 for a represen-
tation of a queue instance. If T0 is the application

73SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4ISSN: 1690-4524

thread, then T0 is a NHRT. Detailed analysis of the
fundamental queue operations follows.

Figure 5: Queue representation in an RTSJ scoped-memory
environment. Rounded rectangles represent scoped-memory
instances and circles represent object instances. T0 is the
application thread and T1 services the stack. The arrows
pointing downward represent legal scope references. The sync
field/object is a synchronization point for T0 and T1. Ei de-
notes element i. On the queue, Ei is a reference to element
i.

ISQ-EMPTY: The current scope contains a
front field that points to the front of the queue. An
empty queue is a queue with no elements. Emptiness,
in Figure 6, is illustrated by the front field of the
current scope pointing to the queue object itself. As-
suming that the running time of the lone line of ISQ-
EMPTY is c1, the worst-case running time of ISQ-
EMPTY is given as T (n) = c1 = O(1).

ISQ-EMPTY(Q)
1 return front = Q

Figure 6: Procedure to test if the queue is empty—scoped
memory implementation

DEQUEUE: The DEQUEUE operation removes
the element at the front of the queue and returns it
if one exists. Otherwise, it returns NULL. A close
examination of the DEQUEUE operation (Figure 7)
reveals that it is similar to the POP operation of Fig-
ure 4. Hence, the worst-case running time for DE-
QUEUE is T (n) = O(1) time.

DEQUEUE(Q)
1 if ISQ-EMPTY(Q)
2 then x← NULL
3 else x← front
4 return x

Figure 7: Procedure to remove an element from the front of
the queue—scoped memory implementation

ENQUEUE: The ENQUEUE operation is a rel-
atively complex operation because of the referencing
constraints imposed by RTSJ: objects in an ancestor
scope cannot reference objects in a descendant scope
because the descendant scope is reclaimed before the
ancestor scope. As a consequence of these constraints,
the elements already in a queue must first be stored
somewhere before a new element can be enqueued. Af-
ter the element is enqueued, all the stored elements are
put back on the queue in their correct order. A stack is
an ideal structure to store the queue elements because
it preserves their order for the queue. As illustrated
in Figure 5, two threads are needed to facilitate the
ENQUEUE operation: one for the queue and one to
service the stack. The thread that services the queue
is the application thread and is referred to as T0; T1

is the service thread for the stack. These two threads
are synchronized by a parameter sync, which they use
to share data between them—see Figure 8.

ENQUEUE(Q, x)
1 while !ISQ-EMPTY(Q)
2 do sync← DEQUEUE(Q)
3 PUSH(S, sync)
4 Sc ← new ScopedMemory(m)
5 enter(Sc, T0)
6 front← x
7 while !IS-EMPTY(S)
8 do sync← POP(S)
9 PUSH-Q(Q, sync)

time cost frequency
c1 n + 1
c2 n
c3 n
c4 1
c5 1
c6 1
c7 n + 1
c8 n
c9 n

Figure 8: Procedure to add an element to the rear of the
queue—scoped memory implementation. Each ci is a constant
and n = |Q|+ |S|. Initially stack S is empty.

PUSH-Q(S, x)
1 scope← new ScopedMemory(m)
2 enter(scope, Ta)
3 front← x

Figure 9: Private helper method that puts an element at
the front of the queue in the same manner that an element
is pushed onto a stack—scoped memory implementation. m ≥
|x|+ |front|.

PUSH-Q is a private method that puts a stored el-
ement back on the queue in the way that the PUSH
operation works for a stack. The worst-case running
time for this method is T (n) = O(1) time. This is the

74 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4 ISSN: 1690-4524

same running time for the PUSH operation of Fig-
ure 3.

Given the procedure in Figure 8 the worst-case run-
ning time for ENQUEUE is linear in the number of
elements already in the queue:

T (n) = (n + 1)c1 + nc2 + nc3 + c4 + c5 + c6 +
(n + 1)c7 + nc8 + nc9

= (c1 + c2 + c3 + c7 + c8 + c9)n + c1 + c4 +
c5 + c6 + c7

= cb ∗ n + ca

= O(n)

The queue problem
The queue problem is defined as the problem of run-
ning an intermixed sequence of n ENQUEUE and DE-
QUEUE operations on a queue instance. We compute
the theoretical running time for the queue problem
by analyzing the worst-case running time of the se-
quence. Since we suggested two implementation con-
texts for the queue ADT, we compute the running
time for each implementation. Suppose n denotes the
number of operations in the sequence and m denotes
the number of ENQUEUE operations, then the num-
ber of DEQUEUE operations is given as n−m where
n−m ≤ m ≤ n. The worst-case running time for the
heap implementation is thus given as:

T (n) = Tenq(m) + Tdeq(n − m)
= m ∗ c1 + (n − m) ∗ c2

= nc2 + m(c1 − c2)
= O(n)

This is identical to the linked-list analysis of the stack
problem because the insertion operation an the dele-
tion operation each executes in constant time. The
scoped memory implementation is more complex for
the ENQUEUE operation. The running time for the
queue problem in that context is also more complex
and more costly. We compute the worst-case running
time as follows:

T (n) = Tenq(m,~s) + Tdeq(n − m)
= Tenq(m,~s) + (n − m) ∗ c2

~s = 〈s1, s2, . . . , sm〉 is included as input to the com-
putation of the running time for the ENQUEUE op-
erations because the running time of each invocation
of the ENQUEUE operation depends on the number
of elements in the queue; si denotes the number of el-
ements on the queue before the ith operation. Given
fixed n and m, the worst-case running time for the
sequence of operations occurs when no DEQUEUE
operations precede an ENQUEUE operation. In this

case the values in ~s are monotonically increasing from
0 to m−1; so for the computation of T (n) given below,
si = i− 1. ca and cb are derived from the ENQUEUE
analysis above and cd is the time for the constant DE-
QUEUE operation.

T (n) = Tenq(m,~s) + Tdeq(n − m)

=
m∑

i=1

(ca + sicb) + Tdeq(n − m)

=
m∑

i=1

(ca + (i − 1)cb) + Tdeq(n − m)

= mca +

(
m∑

i=1

cbi

)
− mcb + Tdeq(n − m)

= mca − mcb + cb

(
m∑

i=1

i

)
+ Tdeq(n − m)

= m(ca − cb) + cb
m(m + 1)

2
+ Tdeq(n − m)

= m(ca − cb) +
m2cb

2
+

mcb

2
+ Tdeq(n − m)

=
cb

2
m2 +

2ca − cb

2
m + (n − m)cd

=
cb

2
m2 +

2ca − cb − 2cd

2
m + cdn

Since m ≤ n it follows that T (n) = O(n2). Thus,
for a scoped-memory queue implementation the worst-
case running time for an intermixed sequence of n EN-
QUEUE and DEQUEUE operations is T (n) = O(n2).

Discussion
Two possible implementations for the queue ADT
were suggested: a singly-linked-list implementation
and an RTSJ scoped-memory implementation. The
singly-linked-list implementation yields T (n) = O(1)
worst-case execution time for each queue operation.
The scoped-memory implementation yields T (n) =
O(1) worst-case execution time for the ISQ-EMPTY
and DEQUEUE operations, but O(n) time for the EN-
QUEUE operation. The reason the worst-case exe-
cution time for ENQUEUE is linear instead of con-
stant is based on the referencing constraints imposed
by RTSJ’s scoping rules. Scopes are usually instan-
tiated in a stack-like fashion. Thus, to enqueue an
element the scope stack must be popped and the ele-
ment in each scope must be stored on a stack or some
other data structure. A new scope to enqueue the el-
ement must then be instantiated from the base of the
scope stack and be placed on the queue. The elements
stored away for the ENQUEUE operation must then
be restored on the queue in a LIFO manner.

In addition to performing analysis for each opera-
tion, we performed analysis for the queue problem,
i.e., the problem of running a sequence of n EN-
QUEUE and DEQUEUE operations on a queue in-

75SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4ISSN: 1690-4524

stance. The singly-linked-list implementation gives
a worst-case running time of O(n) and the scoped-
memory implementation gives a worst-case running
time of O(n2). Thus, the scoped-memory implemen-
tation gives a running time that is an order of magni-
tude larger than the running time given by the singly-
linked-list implementation. This is rather expensive
for an environment that governs its own memory and
gives NHRTs higher priorities than any garbage col-
lector.

Improved scoped-memory implementation
We presented thus far an implementation of a queue in
an RTSJ scoped-memory environment that turned out
to have a worst-case running time of O(n2) for n con-
secutive ENQUEUE operations. Here, we present a
modified queue implementation that has better worst-
case time performance on the queue problem (see Fig-
ure 10).

ENQUEUE(Q, x)
1 nenq ← nenq + 1
2 if nenq is some power of 2
3 then while !ISQ-EMPTY(Q)
4 do sync← DEQUEUE(Q)
5 PUSH(S, sync)
6 for i = 1 to nenq

7 do Sc ← new ScopedMemory(m)
8 enter(Sc, T0)
9 front← getOuterScope()
10 thread[next]← front
11 front← x
12 while !IS-EMPTY(S)
13 do sync← POP(S)
14 PUSH-Q(Q, sync)
15 else temp← thread[next][front]
16 thread[next][front]← x
17 thread[next]← temp

Figure 10: Procedure to add an element to the rear of the
queue—scoped memory implementation.

As with the previous implementation, we use a ser-
vice stack with its own NHRT T1 to manage the queue.
We also limit each scope to holding at most one queue
element, and the ISQ-EMPTY and DEQUEUE op-
erations remain the same as those presented above.
Whereas before we copied the entire queue over to
the service stack for each ENQUEUE operation, now
we do so only for the ith ENQUEUE operation when
i is a power of 2. After the queue elements are copied
to the service stack, and before they are copied back
to the queue in their previous order, we create not one
but i new scopes at the rear of the queue. The new
element is enqueued in the deepest scope—the one
nearest to the front of the queue. The other scopes
remain empty until they are filled on subsequent EN-
QUEUE operations.

Say, for example, we start with an empty queue
and perform 15 consecutive ENQUEUE operations.

The queue now has 15 elements, each in its own
scope. Then another ENQUEUE operation is to be
performed. First, the elements already in the queue
are copied over to the service stack. Then, not one but
16 nested scopes, each capable of holding one queue
element, are created. The element being enqueued is
placed in the most deeply nested scope, i.e., the one
closest to the front of the queue. Then the 15 ele-
ments on the service stack are copied back over to the
queue in their correct order. Now the next 15 EN-
QUEUE operations will fill the empty scopes without
having to use the service stack. A field nenq in the
synchronized shared memory (in the scope containing
both the queue and service stack) will keep track of
the number of times ENQUEUE has been called.

line time cost freq. when nenq = 2x freq. otherwise
1 c1 1 1
2 c2 1 1
3 c3 n + 1 0
4 c4 n 0
5 c5 n 0
6 c6 nenq + 1 0
7 c7 nenq 0
8 c8 nenq 0
9 c9 nenq 0
10 c10 1 0
11 c11 1 0
12 c12 n + 1 0
13 c13 n 0
14 c14 n 0
15 c15 0 1
16 c16 0 1
17 c17 0 1

Figure 11: Statistics for procedure in Figure fig:enq-queue-
scoped-imp. Each ci is a constant and n = |Q| + |S|. Initially
stack S is empty and so n = |Q|.

The queue problem revisited: The worst-case
running time for a single call of the ENQUEUE op-
eration is O(n), where n is the number of elements
already on the queue, so the worst-case running time
for n consecutive ENQUEUE calls, starting with an
empty queue, might reasonably be expected to be
O(n2). Fortunately, however, that turns out not to
be the case. Consider beginning with an empty queue
and performing a series of n ENQUEUE operations
with no DEQUEUEs. During the ith ENQUEUE call,
n = i − 1 (since n is the number of elements already
on the queue) and nenq = i (after the shared-memory
field nenq is incremented as the first step of the EN-
QUEUE algorithm). Then it can be seen from Figure
11 that the ith ENQUEUE call takes ca + cbi time if
i = 2x for some integer x, where

ca = c1 + c2 − c4 − c5 + c6 + c10 + c11 − c13 − c14

cb = c3 + c4 + c5 + c6 + c7 + c8 + c9 + c12 + c13 + c14

76 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4 ISSN: 1690-4524

and cc time otherwise, where

cc = c1 + c2 + c15 + c16 + c17

So, assuming n = 2x for some integer x (which is a
worst case, since the last ENQUEUE will be a linear-
time and not a constant-time operation), the total
running time for all n ENQUEUEs will be

T (n) =
x∑

j=0

(ca + cb2x) + (2x − x − 1)cc

= (x + 1)ca +

 x∑
j=0

2x

 cb + (2x − x − 1)cc

= (x + 1)ca + (2x+1 − 1)cb + (2x − x − 1)cc

= (2cb + cc)2x + (ca − cc)x + ca − cb − cc

= (2cb + cc)n + (ca − cc) log2 n + ca − cb

−cc

= O(n)

Therefore the improved ENQUEUE operation has
a worst-case running time of O(n) on the queue prob-
lem. However, because it overallocates when resizing,
it relies at some point on having twice the number of
cells allocated as are actually in use. Interestingly, a
time/space tradeoff of this nature is endemic to the
real-time collectors [2] as well.

6 CONCLUSIONS

There are many implementations of RTSJ including
TymeSis, JRate, and Sun Microsystems’ implementa-
tion. Many in the real-time and academic communi-
ties are experimenting with RTSJ and scoped-memory
areas. However, until now, there has not been an ob-
jective analysis of scoped-memory areas.

To fill this void we presented a model to perform
asymptotic analysis for RTSJ scoped-memory areas.
Using the model, we determined asymptotic bounds
for RTSJ scoped-memory areas in the context of stacks
and queues. Our analysis permits us to compare
scoped memory with other memory models and to rea-
son more thoroughly about different memory models.

One of the assumptions of our model is to consider
one element per scope. Though we do not suggest
that this assumption be followed in practice, the anal-
ysis does not change if multiple elements are allowed
per scope. Consider, for example, 4k elements per
scope. If 4k elements are enqueued on a queue and
a (4k + 1)th element is to be enqueued (with no in-
tervening dequeues), a new scope would have to be
instantiated to accommodate that element. That en-
queue operation suffers the cost discussed in Section 5.

In the near future, we plan to explore RTSJ scoped
memory use with other abstract data types to gain

a more complete understanding of how they impact
the cost of scoped memory use. However, even in the
case of a simple queue, using RTSJ scoped memories
instead of a collector does not avoid the time/space
tradeoffs experienced with the real-time collectors.
Ours is the first work to point this out.

7 ACKNOWLEDGEMENTS

We thank Morgan Deters for his insight, feedback,
and support. We also thank other colleagues in the
Department of Computer Science and Engineering at
Washington University who gave us editorial feedback
in preparation of the final draft of this paper.

References

[1] Ken Arnold, James Gosling, and David Holmes.
The Java Programming Language. Addison-
Wesley, Boston, MA, 2000.

[2] David F. Bacon, Perry Cheng, and V. T. Rajan.
The Metronome: A simpler approach to garbage
collection in real-time systems. In R. Meersman
and Z. Tari, editors, Proceedings of the OTM
Workshops: Workshop on Java Technologies for
Real-Time and Embedded Systems, volume 2889
of Lecture Notes in Computer Science, pages 466–
478, Catania, Sicily, November 2003. Springer-
Verlag.

[3] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin,
and Turnbull. The Real-Time Specification for
Java. Addison-Wesley, 2000.

[4] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, second edition, 2001.

[5] Morgan Deters and Ron K. Cytron. Automated
discovery of scoped memory regions for real-time
java. In ISMM ’02: Proceedings of the 3rd interna-
tional symposium on Memory management, pages
25–35, New York, NY, USA, 2002. ACM Press.

[6] Max Goff. Celebrating 10 years of Java and our
technological productivity: A look back on the
last 10 years of the network age. http://www.
javaworld.com, May 2005.

[7] F. Pizlo, J. M. Fox, D. Holmes, and J. Vitek.
Real-time java scoped memory: Design patterns
and semantics. In IEEE International Symposium
on Object-Oriented Real-Time Distributed Com-
puting, pages 101–110, Vienna, Austria, May 2004.
IEEE Computer Society.

77SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 4ISSN: 1690-4524

	P369295

