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ABSTRACT 
 
Researchers in remote sensing have attempted to increase the 
accuracy of land cover information extracted from remotely 
sensed imagery. Factors that influence the supervised and 
unsupervised classification accuracy are the presence of 
atmospheric effect and mixed pixel information. A linear 
mixture simulated model experiment is generated to simulate 
real world data with known end member spectral sets and class 
cover proportions (CCP). The CCP were initially generated by a 
random number generator and normalized to make the sum of 
the class proportions equal to 1.0 using MATLAB program. 
Random noise was intentionally added to pixel values using 
different combinations of noise levels to simulate a real world 
data set. The atmospheric scattering error is computed for each 
pixel value for three generated images with SPOT data. 
Accuracy can either be classified or misclassified. Results 
portrayed great improvement in classified accuracy, for 
example, in image 1, misclassified pixels due to atmospheric 
noise is 41 %. Subsequent to the degradation of atmospheric 
effect, the misclassified pixels were reduced to 4 %. We can 
conclude that accuracy of classification can be improved by 
degradation of atmospheric noise. 
 
Keywords: Simulation and modeling, remote sensing data.  
 

1. INTRODUCTION 
 

The value of the land cover classification depends on its 
accuracy. Low classification accuracy of remote sensing data 
remains the area of growing concern in scientific community. 
Therefore researchers in remote sensing have attempted to 
increase the accuracy of the land cover information extracted 
from remotely sensed imagery. Factors that influence the 
classification accuracy are the presence of atmospheric effect 
and mixed pixel information [1]. Natural aerosols such as dust 
particles and water droplet are the main causes of atmospheric 
noise in satellite imagery [4]. The atmospheric scattered noise 
error varies with zenith angle, particle size distribution, and 
scattering coefficient and increases for zenith angle exceeds 

60 o  [3]. The atmospheric error varies also with land cover type. 
The error that is distributed within the whole image will lead to 
misclassification of pixels. A linearly modeled simulated image 
with atmospheric noise and mixed pixel information (class 
cover proportion) representing a real world data set using SPOT 
data was generated, however, the focus will be on correcting the 
atmospheric scattered noise to improve the image classification 
accuracy.  

The most important requirements for generation of the linear 
model are estimation of end member spectra (pure pixel 
information) and class cover proportion (CCP). In general, the 
end member spectra (EMS) can be obtained by carefully 
selecting the pure pixel values from a perfectly homogeneous 
area of the imagery. Multiple member spectra collected from 
several areas of the imagery should be optimized into a single 
representative EMS, since collected multiple spectra include 
spectral variation due to atmospheric effects and imperfect 
calibration [2]. For the estimation of the EMS and cover class 
proportions the least squares method is used.   
Constraining methods, including Lagrangian-Least Square-
Cover Class Proportions (L-LS-CCP), Weighted-Least Squares-
Cover Class Proportions (W-LS-CCP), and Quadratic 
programming constraining method-cover class proportions (Q-
CCP) are used to make the sum of CCP equal to 1.0 [2]. 
Random and atmospheric noises are added to simulate real 
world data sets. The accuracy of classification can be evaluated 
by comparing classified or misclassified points of the corrected 
image (CI) and the simulated noisy image (NI). 
In section 1.1, 1.2, and 1.3, we discuss the principles of the 
linear mixture model, normalized least squares method, and the 
linear mixture model noise respectively.  

 
1.1 Principles of the Linear Mixture Model 

 
According to the linear mixture model, we can write the 
following: 
      ∑ += iejfijMiX  ,    (1) 

Where iX  represents the pixel value, ijM is the EMS, jf  is 

cover class proportions, ei  is a noise term. ijM  is independent 

of jf . In matrix notation, this is:  

ecfcffeMfX ++++=+= µµµ ..........2211 ,         (2)

The vector µi  denotes the columns of M [2]. For least squares 
estimation of cover class proportion, we assume that all errors 
are confined to ′E , and then equation (2) of the linear mixture 
model can be modified in the following: 
  EFMX ′+=′ ˆ    (3) 
Now the goal of least squares is to optimize the n c×  EMS 

matrix M̂  so that the term 
2

FMX ′−′  is minimized. Using 
the least squares method, the solution can be decided such that: 
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   +′′= )(ˆ FXlsM  = 1)]([)( −′′′′ FFTFX   (4) 
+′)(F represents a pseudo inverse matrix of F ′ [2]. The least 

squares optimization will be used in the data generation 
experiment in section 2. 

 
 
1.2 Normalized Least Squares Method 
 

    MATLAB normal random generator is used to estimate the 

CCP. If an estimated vector $FLS  included negative elements, it 
will be set to zero. For example, if the vector of the estimated 

CCP $FLS is [0.4     -0.05      0.7      -0.06], then the negative 
proportions -0.05 and -0.06 will first be set to zero and the new 
$FLS vector will be represented by [0.4   0    0.7     0]. Secondly, 

each proportion will be multiplied by [1 / (sum of element)] i.e., 

[1/(0.4+0+0.7+0)] to yield $FNLS = [4/11   0    7/11     0] [2].  
 
1.3 Linear Mixture Model Noise 
 

The pixel values of the simulated image can be calculated based 
on the linear mixture, equation (2). Atmospheric noise is added 
to the model to simulate the real world data set. The 
atmospheric noise is derived using the following equations: 
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Where Equation (5) represents Bessel function that is needed to 
derive the scattering efficiency per single particle; Equation (6) 

represents the particle scattering efficiency; Equation (7) 
represents the scattering coefficient of the medium surrounding 
the particle; Equation (8) represents the size distribution; 
Equation (9) represents the scattering coefficient per unit 
volume; and Equation (10) represents the scattering noise per 
pixel. maxmin rrr ≤≤ , r is particle size, mr µ1.0min = , 

mr µ10max = , and C is the unknown constant representing the 
highest concentration of particles in a unit volume.  Z is 
altitude, x is the parameter size H is the scale height, m is the 
complex index of refraction and H = 0.8 in a clear sky 
conditions. scanscasca QQQ ....,.........2,1 are the scattering 

efficiencies for different particle sizes ( 1r , ,2r ……… nr ) at 
each image bandwidth assuming that the particle sizes are 
arbitrary (0.1- 0.5 mµ  for band 1; 0.1- 0.6 mµ for band 2; 0.1 - 

0.7 mµ for band 3). In equation (6), scaσ represents an error 
assuming that a fraction of  noise of the scattered radiation is 
assumed to be transmitted to the sensor and can be converted 
back from radiances to digital numbers using Equation (11) [4] 
A is the pixel area, 

pκ  is the pixel value converted to radiances, 

θ  is the zenith angle, minL is the minimum pixel value, maxL is 

the maximum pixel value, and max1scaQ is 255 within the 
image [5]. The noise error for each pixel varies with the zenith 
angle, size distribution, scattering coefficient, and pixel value. 
Using a sequence of iterations in addition to employing 
randomly collected training sets, we can determine the unknown 
constant C in Equation (9). To remove the noise, subtraction of 
the error is essential. Subtraction technique relies on the 
following expression:  

  −= ijij XY scaσ .                                                  (10) 

Where ijX represents the input pixel value at line i (row) and 

sample j (column). The error scaσ   represents the noise per pixel 
as in Equation (10). If deriving the constant C and removing the 
noise led to reduction in the error matrix (confusion matrix of 
the classification result) elements that are located off the major 
diagonal (misclassified pixels), then the overall accuracy 
represented by the major diagonal elements would exhibit 
improvement. The final step is the sequence of classifications 
and evaluations using independent training sets of known 
ground truth locations, error matrices, and KHAT statistics [4]. 
In section 2, we discuss the experiment of the linear mixture 
model data generation. 

 
      2. DATA GENERATION EXPERIMENTS  
 

The generation of the experimental data sets requires creating 
end member’s spectra and the CCP values according to equation 
(2). Each known EMS data set represents real world pixel 
values, for example, combinations of grass, roads, buildings, 
deep water, and shallow water were manually extracted from 
actual SPOT (band 1, band 2, band 3) as shown in figures 3, 4, 
and 5. The EMS was optimized as shown in equation (4). 
MATLAB random number generator initially generated the 
simulated CCP values for each class. The different 
combinations of CCP, L-LS-CCP, W-LS-CCP, and Q-CCP are 
used as constraining methods to normalize the CCP and make 
the sum of three proportions equal to 1. The Q-CCP proved to 
be the best method. Figures 1 and 2 indicate that this method 
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produced better results because of a lower RMSE that does not 
change with sample size. Random noise was intentionally added 
to pixel values and CCP by different combinations of noise 
levels to simulate a real world data set using MATLAB 
program.  
The atmospheric scattering error that is derived in Equation (10) 
has been computed and added for each pixel value. The output 
image can be displayed and classified using IRDAS IMAGINE 
(commercial remote sensing software). The simulated image is 
also classified following the correction of atmospheric noise.   

 
                                3. RESULTS 

 
The Linear Mixture Model is tested using statistical tests to 
determine the reliability of the model. The first test indicates 
that the model is appropriate at 99 % confidence level. The 
second test depicts that the regression model is significant at 90 
% confidence level. The post-processing was performed as the 
final step to test the results by comparing misclassified points of 
the corrected image (CI) and the noisy image (NI). Higher 
misclassified points indicate low accuracy. The accuracy 
assessments and results of the linear mixture model are 
presented in Tables 1, 2, and 3. In Table 1, the total reference 
points are 157200, total misclassification percent error of CI is 4 
%, and total misclassification percent error of NI is 41 %. Total 
error due to atmospheric noise is 37 % for deep and shallow 
water. In Table 2, the total points are 36000, total 
misclassification percent error of CI is 21 %, and total 
misclassification percent error of NI is 51 %. Total error due to 
atmospheric noise for grass and trees is 30 %. In Table 3, the 
total points are 36000, total misclassification percent error of CI 
is 7 %, and total misclassification percent error of NI is 47 %. 
Total error due to atmospheric noise for road and buildings is 40 
%. Therefore the atmospheric error is significant, which resulted 
in low classification accuracy that led to higher misclassified 
pixels.  Image 1, Image 2, and Image 3 are integrated into single 
image. The classification for the integrated image was 
performed and the result is shown in Table 4.  

 
 
4. DISCUSSIONS and CONCLUSION  

 
The main purpose for adopting atmospheric correction in the 
linear mixture model is to investigate its impact on the accuracy 
of classification. After performing all the necessary 
experiments, Table 3 shows great improvement in classification 
accuracy. For image 1, the CI shows an error of 1.26% of 
misclassified pixels (deep water) at the top of the image 
compared to an error of 17 % of the NI. There is an error of 
0.21 % of the CI, compared to an error of 13 % of the NI for 
misclassified pixels of shallow water. There is also an error of 2 
% of CI compared to an error of 11 % of NI misclassified pixels 
of deep water.  
The classification results performed with higher accuracy. For 
image 2 there is 11% error of CI misclassified pixels compared 
to 21% error of the NI misclassified pixels of grass at the upper 
part of the image. There is also 6 % error of CI compared to 17 
% error of NI for misclassified pixels of trees, and 4 % error of 
CI compared to 13 % error of NI for misclassified pixels of 
grass on the lower part of the image. For image 3.There is 4 % 
error of CI compared to 15 % error of NI misclassified pixels of 
roads on the upper part of the image. There is 1.25% error of CI 
compared to 19 % error of NI misclassified pixels of buildings, 
and 1.34 % error of CI compared to a larger 13 % error of NI 

for roads on the lower part of the image. The total error due to 
atmospheric noise of image 3 is 40 % and there are 7 % total 
random error, due to computations, truncations, and mixed pixel 
information.  
These simulation-testing results from images 1, 2, and 3 were 
investigated for the same hypothesis; we can conclude that the 
linear mixture model experiments show significant reduction in 
the misclassified pixels when comparing CI with NI; therefore 
there is significant improvement in classification accuracy when 
the atmospheric error is removed including all the simulated 
images. 
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6. FUTURE RECOMMENDATIONS  
 
The simulated linear mixture model shows promising results for 
improving classification accuracy through degradation of 
atmospheric scattering noise of satellite data. The accuracy can 

be significant for a large scene with zenith angle exceeding 60 o  
where the noise caused by aerosol scattering varies significantly 
across the scene.   
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Random noise level vs RMSE
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 Figure 1 RMSE of CCP estimation and constraining 

methods. Series 1 represents QCCP; series 2 
represents L, W-LS-CCP. 
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 Figure 2 RMSE of CCP estimation and constraining    
                 methods by changing sample sizes. 
 
 
 
 
 
 
 
 
 
 
 

    

 

 

 

 

 

 

 

 
                  Figure 3    Simulation of Image 1     

 

 

   

 

 

 

 

 

 

 
     Figure 4     Simulation of Image 2                    
 
 

 

 

 

 

 

 

 

 

 

 

 
     Figure 5     Simulation of Image 3 
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Figure 6     The integrated simulated image 

 

 

           Table 1.  Comparison between misclassified points of  

                        CI and NI for image 1. 
 

Class 

Ref. 

points 

Mis- 

Class. 

Pixels of 

CI 

Mis- 

Class. 

Pixels of 

NI 

% 

Error 

of CI 

% 

Error 

of NI 

Deep 

water 

 

57640 

 

1977  

 

26365 

 

1.26 

 

17 

Shallow 

water 

 

57640 

 

330  

 

20400 

 

0.21 

 

13 

Deep 

water 

 

41920 

 

2898  

 

19934 

 

2 

 

11 

Total 157200 -      4 41 

 
    Table 2. Comparison between misclassified points of  

                  CI and NI for image 2.  
Class Ref. 

points 

Mis. 

Class.  

 Pixels of 

CI 

Mis. 

Class. 

 Pixels of 

NI 

% 

Error  

Of  

CI 

% 

Error 

of NI 

Grass 13200 3860  7193 11 21 

Trees 13200 2149  5773 6 17 

Grass 9600 1300  4369 4 13 

Total 36000 -  21 51 

 
 

    Table 3. Comparison between misclassified points of  

                   CI and NI for image 2. 

Class Ref. 

points 

Mis. 

Class. 

Pixels 

 Of CI 

Mis. 

Class. 

Pixels 

Of NI 

% 

Error 

 Of 

CI 

%  

Error  

Of  

NI 

Roads 13200 1572  5363 4 15 

Building

s 

13200 450  6960 1.25 19 

Roads 9600 484  4560 1.34 13 

Total 36000 -  7 47 

 

 

 
 
 
 
Table 4   Accuracy assessment for the integrated image 

 
Class type 

Total 
points 

Total 
points  
of CI 

Total 
points  
of NI 

Acc 
Of 
 CI 

Acc 
of  
NI 

Unknown 0 8466 104379  -   - 

Deep water 99560 98639 61854 43 27 
Shallow 
water 

57640 57310 37240 25 16 

Grass 22800 20240 5231 89 2 

Trees 13200 11051 7427 5 3 

Roads 22800 20744 5039 9 2 

Buildings 13200 12750 6240 6 3 

Total % 229200 220734 124821 96 53 
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