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ABSTRACT

Computed Tomography (CT) is generally accepted as the
most sensitive way for lung cancer screening. Its high
contrast resolution allows the detection of small nodules
and, thus, lung cancer at a very early stage. In this paper,
we propose a method for automating nodule detection
from high-resolution 3D chest CT images. Our method
focuses on the detection of both calcified (high-contrast)
and noncalcified (low-contrast) granulomatous nodules less
than 5mm in diameter, using a series of 3D filters including
a filter for vessels and noise suppression, a filter for nodule
enhancement, and a filter for false-positive elimination
based on local skeletonization of suspicious nodule areas.
We also present promising results of applying our method
to various clinical chest CT datasets with over 90%
detection rate.
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Nodules, Computer Asisted Nodule Detection, Filter-
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1. INTRODUCTION

Early detection of lung cancer is critical to improving
chances of survival. The five-year survival rate of lung
cancer patients can reach 85%, if it is diagnosed in an
early stage and surgery is possible [1, 2]. Nevertheless,
only 15% of lung cancer cases are found at the
localized early stage. For early diagnosis of lung
cancer, it is critical to detect nodules less than 5mm
in diameter.

Chest radiographs are still widely used for lung
cancer screening and various computational methods
have been developed to automate nodule detection
from chest radiographs [22]. However, the low sensi-
tivity of radiographs to small nodules restricts current
systems to the detection of nodules larger than 1cm
in diameter. On the other hand, the use of Computed
Tomography (CT) is now generally accepted as the
most sensitive way for lung cancer screening. While
still somewhat controversial, low-dose helical CT has
been suggested as a lung cancer screening method,

particularly in high risk patients. With its high
contrast resolution, CT makes it possible to detect
nodules of small size as well as nodules of low-
contrast that are hard to be seen on conventional
radiographs [13].

In this paper, we describe a method for automating
nodule detection and false-positive elimination from
high-resolution chest CT images. Our method focuses
on the detection of both calcified and noncalcified dis-
crete types of granulomatous nodules less than 5mm in
diameter, using a series of 3D filters. Since pulmonary
nodules can be anywhere inside lung, we first describe
a filter to suppress vessels and noise. Moreover, noting
that many malignant nodules are noncalcified and of
low-contrast, we describe a filter to further enhance
nodule intensity values. Finally, we propose a new
method for false-positive elimination based on local
skeletonization around suspicious nodule areas. We
also present promising results of applying our method
to various clinical chest CT datasets.

2. BACKGROUND

Pulmonary nodule detection is one of the most chal-
lenging tasks in medical imaging. Various factors
can hinder the automatic detection of nodules. Some
factors are related to nodule properties, while others
are related to the complex lung geometry. The
appearance of discrete nodules in a lung can arise from
many different etiologies. In addition to primary or
metastatic malignancies, there may be benign nodules
of various types in the lung. While calcified nodules
are more likely to be benign than malignant, many
benign nodules are not calcified. Moreover, malignant
nodules may occasionally contain calcifications. Other
morphologic features are similarly nonspecific in dis-
tinguishing benign from malignant nodules.

Most frequently used properties of nodules in auto-
matic detection are the shape, size, and intensity pro-
file. Template matching techniques such as Gaussian-
based nodular models [15] and cylindrical vascular
models along with spherical nodular models [21] have
been used to explore these features. Various pattern
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recognition techniques such as fuzzy clustering [12],
a linear discriminant classifier [3, 14], rule-based
classification [4], and patient-specific a priori model [5]
have also been used.

A filtering technique called Quoit filter has shown
promising results [23], although it fails when nodules
do not match with the filter in size or when nodules
are not sufficiently isolated from nearby or penetrating
vessels. To remedy the deficiencies of the Quoit
filter, Miwa et. al. developed the Variable N-Quoit

filter [18]. However, their system for nodule detection
using the new filter dramatically increased the number
of false positives. In addition, their system is overly
complicated involving two 2D Quoit filtering and a 3D
Quoit filtering process.

We proposed earlier a 3D filter-based nodule de-
tection system based on Quoit filter, which was more
natural and intuitive 3D extension of Quoit filter [8].
The system was composed of three filters, including
a filter for vessels and noise suppression, a filter for
nodule enhancement (based on Quoit filter), and a
filter for false-positive elimination. However, the filter
for false-positive elimination used a rather heuristic
evaluation and may result in false-negative classifica-
tion.

This paper furthers our previous system and pro-
poses a new and novel method for false-positive elim-
ination based on local skeletonization. Our focus is
on the automatic detection of granulomatous nodules
from chest CT images. Although granulomatous
nodules frequently have higher intensity values than
surrounding regions due to extensive calcification,
most malignant nodules are noncalcified and, thus,
of lower contrast. Our system targets both calci-
fied (high-constrast) and noncalcified (low-constrast)
granulomatous nodules less than 5mm in diameter.

3. METHOD

We propose a novel and efficient method for automatic
micronodule detection and false-positive elimination
from 3D chest CT images. The proposed method
is based on the system we developed earlier [8] and
improves its accuracy in terms of sensitivity and
specificity. Our primary focus is on the detection
of both calcified and noncalcified discrete types of
granulomatous nodules less than 5mm in diameter.

The challenging problem for any automatic nodule
detection system is to keep low false-positive detection
rate while maintaining high sensitivity. Our earlier
system proposed a series of 3D filters for automatic
micronodule detection from chest CT images. As with
most automatic nodule detection systems, our system
initially detects many false-positive nodules. To elim-
inate false-positive nodules, we introduced another

Figure 1: Cylinder filter and its orientations.

filter based on rather heuristic criteria and pointed
out the need for a better method for false-positive
elimination. This paper furthers the development of
our earlier system and focuses on the false-positive
elimination.

In this section, we first describe a series of 3D
filters for automatic micronodule detection from chest
CT images developed in our earlier system. Then,
we point out a difficulty with the filter for false-
positive elimination. Finally, we propose a new and
improved method for false-positive elimination, based
on the local skeletonization of the area surrounding
each candidate nodule.

Micronodule Detection

Our approach for micronodule detection is composed
of three steps: 1) vessels and noise suppression, 2)
nodule enhancement, and 3) false-positive elimination.

Vessels and Noise Suppression: The primary
task of the proposed system is to detect micronodules
from 3D chest CT images in the presence of a back-
ground of many vessels and noise. The task may be
made more difficult when nodules are adjacent to ves-
sels, fissures, or lung wall. To address this difficulty,
we first apply a cylinder filter to suppress intensity
values of vessels and other elongated structures inside
the lung, while maintaining nodule intensity values
intact. The cylinder filter is defined as:

Fcyl(~x) = max
θ

(

min
~y∈Ω~x

θ

I(~y)

)

(1)

where, I is the 3D image function and Ω~x
θ the domain

of a cylinder centered at ~x with orientation θ. Fcyl is
a hybrid maxmin neighborhood filter that produces
strong responses to cylindrical enlongated regions
(i.e., vessels). In this paper, we have selected the
parameters of Fcyl empirically and used a cylinder with
radius of 2 voxels and length of 7 voxels at 7 different
orientations, as shown in Fig 1.

To suppress vessel intensity with Fcyl, we use

I ′(~x) = I(~x)− Fcyl(~x) (2)
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Figure 2: Filtered images. (a) Original image I, (b)
Image filtered with Fcyl, (c) Image filtered with I−Fcyl,
and (d) Final image filtered with Fsph. The arrow in
each image points to the location of a nodule.

Applying Fcyl as in Eq. (2), the vessel intensity values
are effectively suppreseed while the nodule intensity
values remain almost intact. Fig. 2(b) illustrates the
result of applying Fcyl to a dataset containing the
original images in (a). It can be easily seen from
the figure that Fcyl responded strongly to vessels but
weakly to the nodule. By subtracting the two images
in Fig. 2(a) and (b) using Eq. (2), we obtain a new
image shown in Fig. 2(c). In the figure, we can see
that vessels and noise are effectively suppressed while
the nodule intensity remains intact.

Nodule Enhancement: Feature-based approaches
for pulmonary nodule detection have shown promising
results. The features most widely used are the size,
shape, and intensity of nodules [3, 4, 23]. Granular
nodules tend to be spherical with higher intensity
than surrounding regions. However, many malignant
nodules are noncalcified and of relatively low contrast.
In order not to miss noncalcified low-contrast nodules,
we enhance the intensity values of nodule areas (i.e.,
spherical regions with relatively high intensity com-
pared to surrounding regions) by applying a non-linear
sphere filter.

The response of the sphere filter Fsph at a point ~x is
defined as:

Fsph(~x) = max
~y∈Sr(~x)

I ′(~y) − max
~y∈Sr(~x)−Sr′ (~x)

I ′(~y) (3)

where, r > r′ and Sr(~x) is the domain of a sphere
of radius r centered at ~x (see Fig. 3). Fsph responds
strongly to isolated spherical nodules and weakly to
cylindrical vessels. Note that Fsph fails to produce

(a) (b)

Figure 3: Domains of the sphere filter (Shaded re-
gions). (a) Sr and (b) Sr − Sr′ , r > r′.

strong responses to nodules when the size of a nodule
does not match with the size of Fsph. In other words,
the size of nodules to be detected is determined by
the size of Fsph. In order to detect variable sizes of
nodules, we follow the approach in [18] and employ
the adaptive Fsph whose size is optimally adjusted by

r(~x) = r′(~x) + w and r′(~x) = min
π∈Π(~x)

( |π| ) (4)

where, Π(~x) is the set of all paths from ~x to the
background, |π| is the length of a path π, and w is
the width of the filter. The result of Fsph applied to
a cylinder-filtered image is shown in Fig. 2(d). As
expected, only the nodule produced strong response
to Fsph. The large differences of the filter responses
between nodules and vessel areas allow the automatic
detection of pulmonary micronodules by a simple
thresholding operation.

False Positive Elimination: The challenging
problem for any automatic nodule detection system
is to keep the false-positive detection rate low, while
maintaining high sensitivity. In [8], we introduced a
filter for sphericity test for false-positive elimination
as follows. Let C be a cube surrounding a suspicious
nodule area. The intensity values inside C are
projected onto C along x, y, and z-axes by applying
MIP [20], generating three 2D images, Mi, i = 1, 2, 3.
The suspicious nodule area in each of these images is
extracted separately by thresholding. To maintain the
degree of automation, the three threshold values are
automatically computed using a threshold selection
method such as [19]. The sphericity test is then
applied to the three segmented nodule areas. Let
Ai and Li be the area and the border length of the
segmented nodules in Mi, respectively. Then, the
sphericity of the segmented nodule area is measured
using

F i
e
=

4πAi

L2i
(5)

The final classification of a suspicious nodule was
determined based on the fact that F i

e
is 1 for a circle

and the more elongated the segmented nodule area,
the weaker the response of F i

e
. The suspicious nodules

were thus classified as false-positives and eliminated if
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Figure 4: Sign barriers. (a) Curvilinear object,
(b) Normalized gradient vectors, and (c) Normalized
gradient vectors projected onto horizontal lines.

any of the three segmented nodule areas fails to pass
the test.

This approach is rather heuristic, however, in that
F i

e
assumes that the segmented nodule areas have

smooth boundaries, which is rare in reality. It is easy
to see that a segmented nodule with jagged boundary
will fail the test. In the next section, we propose a
new and novel method for false-positive elimination,
based on local skeletonization of surrounding areas of
suspicious nodules.

False-Positive Elimination with

Local Skeletonization

The purpose of F i
e
was to test whether the segmented

region of a suspicious nodule is elongated in shape
(i.e., vessel) in any of the three directions, assuming
that the segmented region has smooth boundary. As
pointed out previously, however, a segmented nodule
with jagged boundary will fail the test, resulting in
a false-negative classification. In order to avoid the
assumption and, thus, false-negative classification, we
propose a novel method that directly measures the
elongatedness of the segmented region of a suspicious
nodule using local skeletonization method based on
intensity ridges we developed earlier [7]. In grayscale
images, including medical images, the objects of
interest are usually identified as relatively brighter (or
darker) regions and intensity ridges tend to be at the
center of such regions at a given scale. Thus, intensity
ridges have been used as a reliable approximation to
the skeletons [9, 10, 11]. Without loss of generality, we
assume that the objects of interest are brighter than
the background and their centerlines coincide with the
height ridge on the intensity profile.

It is well known that the gradient at any point
on such objects generally points towards the ridge
and reverses its direction as it crosses the ridge [6,
7, 16, 17]. Similarly, for a point to be on a ridge,
it must be a local maximum on some direction, i.e.,
on a line passing through the point. Consider a
line (Lθ) with an arbitrary orientation θ and three
contiguous points (p−1, p0, p+1) on it. If p0 is on a
ridge, the gradients at p−1 and p+1 must point toward

p0, forming a sign barrier between them. Fig. 4 (b)
illustrates an example of sign barriers around the ridge
of a curvilinear structure in (a). Note that the sign
barriers are not easily identifiable at some part of the
object. We can enhance the sign barriers by projecting
gradient vectors onto Lθ, as illustrated in (c), where
θ = 0 (horizontal lines) is used. In summary, if a ridge
intersects Lθ, it generates a sign barrier on the line,
i.e., between the two adjacent points that enclose the
point of intersection.

It has been shown in [6, 7] that examining sign
barriers on two projection lines, Lθ and Lθ′ , with
sufficiently different orientations detects all the ridge
points, leading to a simple scan-conversion algorithm
for ridge point detection. Given a gradient vector field
∇I(x, y) = 〈vx, vy〉, two vector fields (Nθ and Nθ′)
are computed by projecting the gradients onto Lθ and
Lθ′ , respectively. For Lθ and Lθ′ to have sufficiently
different orientations, we naturally use θ = 0 and
θ = 90, and the projection simply becomes:

N0(x, y) = 〈 sign(vx), 0 〉

N90(x, y) = 〈 0, sign(vy) 〉 .

Then, the algorithm scans N0 with L0 from top to
bottom and N90 with L90 from left to right. For each
scan, it searches for sign barriers on L0 from left to
right and L90 from top to bottom. Finally, it combines
the points of sign barriers on L0 and L90.

The scan-conversion algorithm is applied to each
Mi of the three MIP images of the surrounding area
of a suspicious nodule and the length li of the skeleton
branch is measured in pixels. If li/r > δ, where r is
the radius of Fsph used to detect the candidate nodule
(see Eq. (4)) and δ is a given constant, the nodule
is classified as false positives. In this paper, we have
empirically selected and used δ = 2r.

4. RESULTS

We applied the method to clinical chest CT datasets
containing 49 nodules. The datasets were digitally
resliced to ensure cubic voxels and the lung areas were
extracted. The vessels and noise in the lung areas
were first suppressed using the cylinder filter. We
have selected the parameters of the filter empirically
and used a cylinder with radius of 2 voxels and
length of 7 voxels at 7 orientations. The results
were filtered again with the sphere filter to enhance
nodule intensities. Then, suspicious nodule regions
were extracted and skeletonized using scan-conversion
algorithm for false-positive elimination. Our method
reported 52 nodules and an experienced radiologist
verified that all the 49 nodules present in the datasets
were correctly identified and confirmed that they were
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Table 1: Results.

Radiologist’s Before FP After FP
Reading Elimination Elimination TP FP FN

49 97 52 49 3 0

less than 5mm in diameter. The results are sum-
marized in Table 1. Although our method detected
all the 49 nodules present in the datasets without
false-negative nodules, it also reported 2 false-positive
nodules. These cases were cause by abrupt intensity
changes in small regions of vessels, which are very
similar to nodules penetrated by vessels. Fig. 5 shows
typical cases of the detected nodules. In each pair
of images in the figure, the processed image is shown
on the left and the original image on the right. The
method successfully detected nodules that are close
to lung walls (Fig. 5 (a)), sufficiently isolated nodules
(Fig. 5 (b)), nodules with nearby vessels (Fig. 5 (c)),
nodules with penetrating vessels and nodules adjacent
to a fissure (Fig. 5 (d,e,f)).

5. CONCLUSIONS

We have introduced a series of filters for automated
micronodule detection from 3D chest CT. These in-
clude a cylinder filter for vessel and noise suppression,
which generates sufficient gaps in intensities between
nodule and vessel regions for further processing. Then,
the sphere filter was introduced for nodule enhance-
ment, which was a natural 3D extension of 2D Quoit
filter. Finally, we proposed a method for false-
positive elimination based on the local skeletonization
of surrounding regions of suspicious nodules.

We conducted a preliminary set of experiments
with our method on clinical chest CT datasets. The
experiments confirmed that the proposed method was
able to detect various nodules, including nodules with
nearby vessels or even nodules with penetrating vessels
and fissures. The datasets contained 49 nodules with
diameter less than 5mm and the method detected
all the nodules without false-negative classification.
However, it also reported 3 false-positive cases. These
cases result from the abrupt intensity changes on small
regions of vessels, which is very hard to differentiate
from nodules with penetrating vessels. With the
promising preliminary results, we plan to further our
experiments in the future to obtain statistically useful
validation.
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