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ABSTRACT 
 

An extraordinary generality, conceptual simplicity and practical 
usefulness of the Tellegen’s theorem is well known in the field 
of electrical engineering [1]. It is one of few general theoretical 
results that apply in non-linear and time-varying situations, too. 
For standard linear electrical network models with constant 
parameters many classical results of electrical circuits theory 
can be derived as direct consequences of it. 
In the paper a more general class of abstract strictly causal 
system representations is addressed. A new problem, that of the 
abstract state space system representation structure reconstruc-
tion has been formulated in [3], and partially solved in [3] and 
[4]. In this paper a new approach based on a generalized form of 
the classical Tellegen’s principle, providing an equivalence 
class of physically as well as mathematically correct solutions is 
developed and some well-known, as well as new results are 
shown to be straightforward consequences of the derived struc-
ture.  Some connections of dissipativity, conservativity, state 
and parameter minimality, instability and chaos with system 
representation structures are investigated from this point of 
view. Analytical results are illustrated by a number of typical 
examples and visualized by simulations. 
Keywords: physical and mathematical correctness, signal 
power balance principle, system energy additivity, equivalence 
relation, state and parametric minimality 

 
 

1. INTRODUCTION 
 
In many real-world situations some natural concepts, such as 
causality principle and different forms of conservation laws, 
have generally been recognized as system properties of  crucial 
practical importance. In many specific fields of science and 
engineering such concepts have frequently been used as 
fundamental tools of system modelling and analysis. On the 
other hand there are many fields and/or real situations in which 

the laws of nature are not known or are not expressed in proper 
mathematically exact form. In such cases the main source of 
information  on which the system representations relay is an 
identification procedure or an parameter estimation technique 
using experimentally gained data only [4], [5], [6]. It is standard 
way to classify the identification methods as non-parametric if 
no prior information about the system structure is assumed.    
If real physical structure of the system under investigation 
would be explicitly known the so called parametric methods of 
identification could be used, and consequently more adequate 
modelling results should be expected [7]. Unfortunately, any 
reliable explicit knowledge of  the  physical system structure is 
more an exception  as a rule.    
One frequently used approach trying to attack the unknown 
structure problem is to choose the model structure ad hoc using 
some heuristic arguments, and verify whether the obtained 
quantitative results are not in contradiction with obvious 
qualitative expectations concerning the real system behavior 
and/or with results of additional experiments.  
The main aim of the contribution is to put the fundamental 
system-theoretic question of the real internal system structure 
reconstructability and to investigate some possibilities of its 
systematic solution. The proposed approach gets out from the 
hypothesis that any physically correct system representation 
must not be in contradiction not only with a set of measured 
data but also with a form of an energy-like conservation 
principle. Hence introducing the additional requirement of a 
proper defined abstract form of energy conservation principle as 
an attribute of any causal system representation seems to be the 
most natural and appropriate way to do it.  
 
 

2.  STRUCTURE  RECONSTRUCTION  PROBLEM 
 

At first, we introduce the natural concepts of physically correct 
and incorrect internal system structures using a few simple 
examples for motivation.   
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Example 1: Let us imagine that the following n-th order transfer 
function representation for n = 3 

    1
3 2

1 2 3

( )( )
( )

y s bG s
u s s a s a s a

= =
+ + +

                        (1) 

is given as a result of some identification procedure using some 
real data measured on a real system with unknown internal 
structure. The so called realization problem [5], is to find a 
triplet of matrices {A, B, C}in such a way that it holds: 

              [ ] 1( ) . .G s C s I A B−= −                                     (2) 
It is well known that the solution of this problem is not unique, 
because the specific structure of the matrices above depends on 
the choice of the so called state variables x1, x2, ... xn. If no 
additional information about actual internal structure of the 
given real physical system is known, then many different 
choices are equivalent from the input-output relation (1), (2) 
point of view, and any of them can be considered as equally 
mathematically correct if a set of state equivalence conditions is 
satisfied. 
One natural way how to determine an internal structure for the 
given system description can be motivated by converting G(s) 
back into the time domain  and write: 
             ( ) ( ) ( ) ( ), ( ) . ( )ny t S t w t w t B u t+ = =                (3) 
where the structure function S defined as scalar product of a 
parameter vector  and a state vector representation: 

              
1

( ), ( ) . ( )
n

k k
k

S x t S t x t
=

= Θ ⇔ = Θ∑                  (4) 

describes the relation between state and structure of any system 
representation. Now, because the parameter vector  Θ  is speci-
fied  by G(s), the most natural choice of  state vector compo-
nents ( )ix t  follows from: 

 1 1 2 2 3 3S a x a x a x= + +                          (5)  
Thus the resulting internal structure of the chosen system rep-
resentation  is determined by the matrices  A, B, C as follows:             

[ ]
1 1 2 3, ,
0 1, 0, 0 , 0, 0, 1 ,
0 0, 1, 0

b a a a
B A C

− − −   
   ⇒ = =   
      

�   (6) 

and can be visualized  equivalently by the oriented signal-flow 
graph G  as shown at the Fig.1. 
 

y t( )u t( ) x1 x2 x3

-a2

-a1

-a3
g

     
Fig.1. Internal structure induced by the state x(t) 

 
It is easy to verify that the resulting system representation struc-
ture is mathematically correct for any real values of the parame-
ters,  but for the system order  n = 3, or greater, such structures  
can not  be accepted as physically correct in sense of input-
state-output signal energy transfer if both the signal power 
balance principle and signal energy additivity are required to 
hold simultaneously.  
To explain the situation, assume that the parameter values are 
such that the given system is dissipative and the output signal 
power Po is defined by 

       
2 2

o 3( ) ( ) ( ), ( ) ( )TP t y t C C x t x t x t= = =          (7) 

then for any past- and for zero future input the signal power 
balance relation reads [4] 

 [ ]0( ), : ( ) ( )o
o

dE
x t t x t P t

dt
∀ ∀ = −                (8) 

and is satisfied if and only if the energy Eo (.)  is given by: 

 ( )
2

22 21 1 2
o 3 2 1 3 1 1 2 3

2 3 1

( )E x x x x x x∆ ∆ ∆
= + +∆ + +∆ +

∆ ∆ ∆
    (9) 

  1 1 2 1 2 3 3 3 1 2 3, , ( )a a a a a a a a∆ = ∆ = − ∆ = −            (10) 
that obviously does not obey the additivity requirement. 
Example 2: Consider the same system (1), (3), but with a 
different internal structure. Now we choose the state variables in 
such a way that the signal energy additivity   
      1 1 1 2 2 2 3 3 3( ) ( ) ( ) ( )E x E x E x E xδ δ δ= + +          (11) 
as well as the energy balance relation holds. It is easy to see 
that if 1x  is chosen as the measured output signal then a set of 
the state variables exists for which an equivalence class of 
physically correct structures can be found. Such a choice of the 
measured output power induces the physically correct internal 
structure shown at the Fig.2. 
 

g

x3 x2 x1u t( ) y t( )

Fig.2. Internal structure induced by the output power 
 
It is easy to see, that the resulting chain structure, if realized for 
example by means of passive electrical components, is 
compatible with the actual internal structure of an electrical 
network described by matrices 

      

1 2 1 1 2 1 1

1 2 2 1 2 2 2

1 1 1
, ,

( ) ( )

1 1
, , 0 ,

( ) ( )

1
, 0 , 0

0
1

0

R R C R R C C

A
R R C R R C

L

B
C

−
+ +

= −
+ +

−

 
   
   
   =   
   
    
  

        (12) 

and for  y(t) = i(t),  u(t) = I(t)  is shown at the Fig.3. 
  

   

i( )t

I t( ) C2

R1 L

C1
A

R2

 
Fig.3. An example of physically correct structure for n=3. 

 
The examples above can be seen as a motivation of the internal 
structure reconstructability concept and the problem of system 
structure reconstruction as follows: 
Definition 1: (Physical correctness)  
Assume, that an external representation  
       ( ) ( 1)

1( ) ( ) , ,..., , ,...,n n
ny t w t F y y y − − = Θ Θ �   (13)    

of a strictly causal system S is known. For any given 
parametrization  Θk  find a class of equivalent structure function 
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representations S  in such a way that any internal 
representation induced by 

        ( ) ( ) ( , ) ( )ny t S x w t+ Θ =                       (14) 
will not be in contradiction with a form of signal power balance 
principle and corresponding energy function will have the 
additivity property. Any such input-state-output representation 
will be called  physically correct. 
Definition 2: (Structure reconstruction problem)  
Given an abstract mathematically correct system representation, 
then the internal structure reconstruction problem (ISRP) 
consists in finding such a specification of state and parameter 
vectors that physical correctness follows.   
In the well developed field  of electrical networks the well 
known Tellegen’s theorem [1], has proven to be one of the most 
fruitfull results in this direction.  
 
 

3. CLASSICAL TELLEGEN‘S  THEOREM AND 
CORRECTNESS  OF  ELECTRICAL CIRCUITS 

 
In this section some basic ideas concerning mathematical and 
physical correctness of linear electrical networks are briefly 
summarized. 
As the circuit theory postulates validity of Kirchhoff’s laws 
(further KLs), we will strictly demand that the circuit be not in 
contradiction with the KLs. 
Definition 3: (Correctness of a circuit)  
A circuit satisfying both KLs is called (physically) correct.  
A well known graph-theoretic result [2], gives the following 
criterion of the electrical circuit correctness. 
Theorem 1: (Criterion of correctness for a circuit)  
A circuit is correct if there is no loop coinciding with the 
voltage branches  (i.e. uβ∩ = ∅L )  and, at the same time, no 

set cut coinciding with the current branches (i.e. iβ∩ = ∅C ). 
It has been shown in [3] that a different approach based on more 
general system-theoretic concepts can be developed. The main 
results of this alternative  approach are in fact  based on the 
simple idea that the concept of correctness  expresses two 
different requirements:  
1. The property of mathematical correctness - elimination of 

all redundant elements of the mathematical description, i.e. the 
state- and parameter minimality of system representation, 
 2.  The property of physical correctness - expressing the fact 
that some form of energy conservation principle has to hold for 
any physically correct  representation. With the motivation 
above the following definition will be proposed. 
Definition 4: (Correctness of system representation)  
A network or a  system representation will be called correct if it 
possesses two properties: the mathematical correctness and the 
physical correctness. 
It is well known [1], that Kirchhof’s laws are closely related to 
the classical Tellegen’s theorem (CTT).  Especially the fact that 
independently of the knowledge of system components the 
validity of energy conservation law can be proven as a direct 
consequence of CTT is of crucial importance for system 
structure determination. From the physical correctness problem 
point of view it is natural to ask if the classical formulation of 
CTT in terms of currents and voltages could be generalized in 
such a way that these electrical variables will be replaced by 
some abstract variables without any a’priori defined physical 
meaning.    
Roughly speaking, the Tellegen’s theorem asserts that 
Kirchhoff’s laws are sufficient for energy conservation in an 
electrical network. The CTT is extremely general tool of system 

analysis and synthesis in electrical network theory; it is known 
to be valid for any lumped electrical network that contains any 
elements, linear and non-linear, passive and active, time-varying 
and/or time-invariant. This generality follows from the fact that 
Tellegen’s theorem depends only on the two Kirchhof’s laws.   
In order to explain the essential features of CTT, consider an 
arbitrary connected electrical network of b components and 
choose associated reference directions for the branch voltages 
vk(t) and branch currents ik(t). In such notation the instantaneous 
value of the power Pk(t) delivered at time t  by the network to 
the branch  k  is given by the product:                    

  Pk (t) = vk (t)  ik(t)                                 (15) 
Next, let us disregard the specific nature of the network 
components and represent the given network structure by an 
oriented graph G   with  n vertices and b branches. The 
Tellegen’s theorem asserts that the total network power P(t) 
satisfies the “power balance” relation:   

                                
1

( ) ( ) 0
b

k
k

P t P t
=

= =∑                          (16) 

The only requirement on the branch voltages vk is that they 
satisfy all the constraints imposed by the Kirchhoff’s voltage 
(KVL); similarly the branch currents ik have to satisfy all the 
constraints imposed by Kirchhoff’s current law (KCL). The 
specific nature of the network elements, or, in fact, whether 
there are any elements that would have these ik and vk as branch 
variables, is absolutely irrelevant as far as the truth of CTT is 
concerned. Let the set of Kirchhoff  law constraints be given by 
                                             A i  =  0                                     (17) 
                                             B v  = 0                                      (18) 
where A is an  node incidence matrix, B is an appropriate loop 
incidence matrix, and vectors i and v  are defined   

  [ ]1 2= , ,..., T
ni i i i                                (19) 

     [ ]1 2, ,... T
nv v v v=                   (20) 

Consider the vectors of network component currents and 
voltages to be elements of an  b-dimensional Euclidean vector 
space Eb and define the inner product operation 

                         
1

,
b

k k
k

i v i v
=

= ∑                                   (21) 

Let J be the set of all vectors i  such that  i ∈ J  if and only if  i  
satisfies equation (17). Let V be the set of all vectors  v such that 
v ∈V if and only if  v satisfies equation  (18).  
The important principle known in the field of electrical network 
theory as the Tellegen’s theorem [1] follows: 
Theorem 2:  (Classical Tellegen’s Theorem) 
If  i ∈ J and  v∈V  then it holds 
                       : ( ), ( ) 0t i t v t∀ =                          (22)  
That is to say J and V are orthogonal subspaces of the 
Euclidean space Eb. Furthermore J and V together span Eb.   
Remark 1: It is worthwhile to notice the close relation of 
physical correctness to the Tellegen’s principle. 
Remark 2: It is of crucial importance to realize that the branch 
voltages v1, v2,…, vb are picked arbitrarily subject only to the 
KVL constraints. Similarly, the branch currents i1, i2,…, ib are 
picked arbitrarily subject only the  KCL. It means that if 
different sets v1, v2,…, vb, and i1, i2,…, ib of arbitrarily selected 
branch voltages and branch currents satisfying the same KVL 
constraints and the same KCL constraints  will be considered 
then we may apply the Eqn.(22) to the new sets of  variables 
and obtain  
                           : ( ), ( ) 0t i t v t∀ =                             (23) 
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Remark 3: The last condition will be used later as a motivation 
for introducing a group of system  equivalence transformations 
on which a generalization of Tellegen’s principle is based. 
Remark 4: Using the abstract input-state-output causal system 
representations philosophy, it follows that an abstract general-
ized form of the Tellegen’s relation has to hold, that relates 
external variables, input and output signals of a real system S to 
a set of abstract internal variables xi (t) representing the state of 
a proper chosen equivalence class of system representations in 
such a way that an abstract form of the energy conservation 
principle holds structurally, i.e. independently of the choice of 
system parameterization.  
This is the key idea of the proposed approach to system struc-
ture reconstruction problem, as well as to nonlinear minimality, 
dissipativity, conservativity, instability and deterministic chaos, 
based on a generalization of classical Tellegen’s principle.  
 
 
4. GENERALIZED  TELLEGEN’S  PRINCIPLE -  
    A NEW FORM OF ENERGY CONSERVATION LAW 
 
From the system representation correctness point of view, as 
discussed above, it is clear that two different issues have to be 
distinguished: the so called mathematical correctness which 
seems to be equivalent to the state-and parameter minimality 
property of a causal system representation, and the physical 
correctness which is closely related to some form of signal 
power balance relation. Thus it is natural to require that besides 
of causality principle every physically correct system 
representation has to satisfy some form of the signal energy 
conservation law.  
The main purpose of this section is to analyze the possibility of 
generalizig the idea of Tellegen’s principle as presented above 
for more general system representations in which the physical 
meaning of all the internal system variables is not a’priori 
known.     
Certainly, any realizable system has to fulfill some causality 
and energy conservation requirements. Recall that existence of 
an abstract state space representation is necessary and suffi-
cient for a system to be causal. On the other hand causality does 
not imply energy conservation. In the field of electrical engi-
neering Kirchhoff’s laws are necessary and sufficient for 
physical correctness of any electrical network from energy 
conservation point of view. Tellegen’s theorem, which is known 
to be one of the most powerful tools of system analysis and 
synthesis in electrical network theory, can be seen as a very 
elegant abstract form of energy conservation principle for a 
class physically correct system state space representations, in 
which voltages and currents have been chosen as state variables. 
Let us briefly summarize the essential features of the Tellegen’s 
theorem 2. Assume that an arbitrary connected electrical 
network of  b components is given. Let us disregard the specific 
nature of the network components and represent the network 
structure by an oriented graph  with  n  vertices and  b 
branches. Let the set of Kirchhoff  law constraints be given in a  
form (17), (18). 
It is obvious fact, following directly from the definition of inner 
product, that relation (22) is just a form of constant energy 
statement for a class of representations in which elements of a 
set of voltages and currents have been chosen as state vari-
ables, as well as components of a gradient vector of a  scalar 
field in  the state space.  
Let { }Sℜ is a continuous-time time-invariant strictly causal 
nonlinear system state space representation given by: 

          
0

0{ } : ( ) [ ( )] ( ), ( )

( ) ( ),

,S x t f x t B u t x t x

y t C x t

ℜ = + =

=
       (24)                          

The arbitrariness in the choice of state coordinates motivates 
introducing a group of state- and feedback- transformations on 
which the generalization of classical Tellegen’s principle has 
been proposed in [4]. 

        

1φ, , : ( ), φ( , ) :

   , ( ) 0 , 0

      : [ ( )] [ ( )]

T

T T x T x u u x

f grad E x x

t E x t E x t

−∃ ∃ = =

= ⇔ =

⇔ ∀ =

�              (25) 

For a class of discrete-time finite dimensional internal system 
representations { }Sℜ given by 

                       [ ]1 ( )( ) ( ) ,

( ) ( ) , ( ) ( )

x kx k f w k

w k B u k y k C x k

+ = +

= =
           (26) 

Similarly as in the case of continuous-time systems, a new 
discrete-time generalization of Tellegen’s principle has been 
introduced in [3]. If any input u(k) and any state value x(k) will 
be chosen then the next state value x(k+1) is given, and the state 
difference vector ∆x(k) can be defined as 

{ }( ) ( 1) ( ) , 0,1,2,..kx k x k x k x k∆ = + − ≡∆ ∈           (27) 

together with a row “gradient vector” η(k) defined by: 

     { }1η(k) [ ( 1) ( )] η ,   0,1,2,
2

T
kx k x k k= + + ≡ ∈ …   (28) 

Interpretation of the vector ηk as a natural discrete-time energy 
function gradient vector is obvious, and the discrete-time gen-
eralization of Tellegen’s principle is then given by the inner 
product:    

           { } k, 0,1, 2, : , η 0T

kt k k x∀ ≡ ∈ ∆ =…         (29) 

For deeper understanding a geometric interpretation of the 
generalized Tellegen’s principle is visualized at the Fig.4. with 
continuous-time version as a limit of the discrete-time case. 
 

 
      a) discrete-time                     b) continuous-time, 
 

Fig.4. Geometric interpretation of the generalized Tellegen’s 
principle (for n=2) 

 
 

5.  CONSERVATIVITY AND DISSIPATIVITY 
 

Let us consider the class of continuous-time nonlinear time-
varying strictly causal systems given by the state space repre-
sentation  

     { } :    ( ) [ ; ( ), ( )]S x t f t x t u tℜ =�                     (30) 

              ( ) [ ; ( )]y t h t x t=                   (31)            
with  t  as continuous time variable, 
 x1 , x2,,… , xn      as the state space coordinates,  

1x� , 2x� , …, nx�  as coordinates of the state velocity, 
  u1 , u2,,… , ur  as the  input signals, 
 and with y1 , y2,,… , yp   as the  observed output signals. 
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Recall that according to Liouville’s theorem of vector analysis, 
dissipative systems have the important property that any volume 
of the state space strictly decreases under the action of the sys-
tem flow. For nonlinear system representations { }Sℜ with the 
state velocity given by a nonlinear vector field f the property of 
dissipativity is defined by using the operation of divergence as 
follows [4]. 
Definition 5: (Dissipativity of a vector field)  
The representation { }Sℜ with the state velocity vector field f is 
dissipative if it holds 

                         
1

( )
div ( )

n
i

i i

f x
f x

x=

∂
=

∂
∑ < 0                       (32) 

Let us now define a constituent set of finite number of non-
interacting  elementary subsystems                     
                 1x� = f1( t , x1  , u1) ,           y1 = h1( t , x1) 

                 2x� = f2( t , x2  , u2,),           y2,= h2( t , x2) 
                   . . . . . . . . . . . . . .           . . . . . . . . . .                    (33)                                                                                                 
                 nx� = fn( t , xn   , un),           yn = hn( t , xn ) 
It follows that the constituent set (33) is dissipative if at least 
one of the elementary subsystems is dissipative.  
Remark 5: It is easy to deduce that the constituent set of non-
interacting subsystems with zero input and with unique equilib-
rium state is locally asymptotic stable iff each of the elementary 
subsystems is dissipative. It means that in general dissipativity is 
necessary but not sufficient for asymptotic stability. 
Remark 6: Nonlinear systems having at an equilibrium state a 
dissipative approximate linearization are locally dissipative in a 
neighborhood of this equilibrium state, but need not to be glob-
ally dissipative, i.e. their region of dissipation need not be the 
whole state space. 
Remark 7: Recall that systems with                                                                                               
                                       div ( ) 0f x =                           (34)        
preserve volume along state trajectories; such systems are usu-
ally referred to as conservative.  
Notice that this concept of conservativity is not always com-
patible with the classical meaning of the term conservative as 
energy preserving (also called Hamiltonian ).  
Remark 8: Notice that a linear time invariant  system  

                    
0

0{ }:   ( ) ( ) ( ),  ( ) ,

( ) ( ),

S x t Ax t Bu t x t x

y t Cx t

ℜ = + =

=

�
             (35) 

is dissipative if and only if its matrix A has negative trace, i.e. 
iff it holds  

                      Tr A  < 0                                           (36) 
Thus an asymptotically stable linear system is always dissipa-
tive, while the converse is not true in general. 

 
 

6.  STATE MINIMALITY AND STATE EQUIVALENCE 
  

Let’s consider continuous-time linear time-varying strictly 
causal state space system representation  ℜ{S}: 
 

     ℜ{S}: dx(t)/dt=A(t)x(t)+B(t)u(t), dimx(.)=n,dimu(.)=r    (37) 
                y(t) = C(t) x(t) ,  dim y(.) = p,                            (38) 
where 1≤ r ≤ n, 1≤ p ≤ n, and the matrices A(.), B(.), C(.)  are 
supposed to be known. Assume that the given  system S has the 
asymptotic stability property  and that its representation ℜ{S} 
has the minimal order n, i.e. it is controlable and observable. In 

such a case the  controlability and observability Grammian 
matrices  Wc(t)  and  Wo(t)  exist, are symmetric and positive 
definite, and satisfy the Lyapunov-like equations: 
 

  A(t) Wc(t) + Wc(t) AT(t) + dWc(t)/dt  =  − B(t) BT(t)            (39) 
  AT(t) Wo(t) + Wo(t) A(t) + dWo(t)/dt = − CT(t) C(t)             (40) 
Any such representation induces an equivalence class of 
minimal, controllable, observable and asymptotic stable state 
equivalent system representations given by the conditions of  
state equivalence in the form 

 ( )A t  = [T(t) A(t) + dT(t)/dt ] T -1(t),                              (41)                          

 ( )B t  = T(t)  B(t) ,                                                           (42) 

      ( )C t  = C(t) T -1(t),                                                          (43) 
generated by the group of linear time-varying  state equivalence 
transformations:                                      
             -1( ) ( ) ( ) , ( ) ( ) ( )x t T t x t x t T t x t= =               (44)  
It is well known fact that in the linear time-invariant case the 
Grammian matrices Wc(t) and  Wo(t) are closely related to the 
input and output signal energy functions, respectively [2], [4]. 
In previous part it has been shown that the state minimality 
property of any linear strictly causal system representation is 
equivalent to the property of positive definiteness of both the 
observability and controllability Grammian matrices if these 
ones are well defined, i.e. if the representation has the property 
of asymptotic stability. From the mathematical correctness point 
of view there is no reason to require such a property in general 
case. Hence there is a need to separate the minimality condi-
tions from the asymptotic stability conditions. It is well known 
that the minimality of linear time-invariant system representa-
tions can instead of Grammians be tested independently of 
stability property using rank conditions of the controllability 
and observability matrices Hc and Ho defined by the expressions 
     2 1, , , ..., n

cH B AB A B A B− =                                         (45) 

     2 1, , ( ) , ..., ( )T T T T T T n T
oH C A C A C A C− =                     (46) 

It is easy to show that for any two state equivalent state repre-
sentations the following relations hold 

 c cH T H=                                          (47) 

                             1( )T
o oH T H−=                                       (48) 

and can be used for determination of the state transformation  
Equation (44) if  the internal structure of both the equivalent 
representations is known. 

 
 

7.  STATE ENERGY ADITIVITY 
 

Consider the time-invariant system representations Eqns.(37), 
(38); the finite controllability  Grammian matrix Wc (t) at time t 
is defined as follows 

     
0

( ) . . .
T

C

t
A T AW t e B B e dτ τ τ= ∫                           (49) 

and has two important properties [4]. 
First, ( ) 0T

c cW t W= ≥  and secondly, the columns of Wc(t)  
span the controllable space, i.e. the image of  Wc(t) equals to the 
image of the controllability matrix Hc : 

       [ ] [ ]im ( ) im ( , )c cW t H A B=                           (50) 

It can be shown that the state defined by the chosen structure of 
matrices A, B is controllable if, and only if Wc(t) is positive 
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definite for some t > 0. If the controllability Grammian matrix is 
invertible, then the minimum energy input signal u(.) exists and 
the minimum input signal energy  corresponding to the state 
transfer from the zero state to x(t) is known to be given by 
        Energy{u(.)}  = -1( ) ( ) ,  0T

cx t W x t t >                   (51) 
Similarly, using the observability Grammian matrix Wo(t),    the 
output signal energy at time t caused by the initial state x(t0) is 
known to be given by the quadratic form: 
        { } 0 0 0Energy (.) ( ) ( ) ( ),T

oy x t W t x t t t= <               (52) 

where the finite observability Grammian Wo(t) at time t < +∞  is 
defined by the expression [6] 

                   
0

o
0

( ) . . . d
T

t
A T A

t

W t e C C eτ τ τ
=

= ∫                         (53) 

and has two important properties. First, ( ) ( ) 0T
o oW t W t= ≥ .  

Secondly, for positive values of t, the kernel of finite ob-
servability Grammian matrix is equal to the kernel of ob-
servability matrix  Ho  
                  [ ] [ ]ker ( ) ker ( , )o oW t H A C=                            (54) 
In the case of standard infinite time observability Grammian, 
i.e. for t → ∞ the largest observation energy produced by any 
given value of initial state x(t0) is given by 

                     [ ]0 0 0( ) ( ) ( )o o
TE Wx t x t x t=                          (55) 

assuming the couple (A, C) is observable and A is such that 
asymptotic stability conditions are satisfied. In such case the 
Lyapunov’s equation 
                          T T

o oA W AW C C+ = −                       (56)     
which in fact expresses a  form of  the state-output energy 
transfer balance relation, can be used  for determination of  the 
unknown output energy function Eo(t). 
In the dual case of standard infinite time controllability Gram-
mian, i.e. for t → ∞ the minimal input energy required to trans-
fer the zero initial state to any state x(t1) is given by 
                     [ ] -1

0 1 1( ) ( ). . ( )T
I cE x t x t W x t=                       (57) 

assuming the couple (A,B) is controllable and A is such that 
asymptotic stability conditions are satisfied. In such a case the 
Lyapunov’s equation 
                           T T

c cAW A W B B+ = −                         (58) 
which in fact expresses a form of the input-state energy transfer 
balance relation, can be used as a tool for determination of  the 
unknown input energy function EI(t).  
Remark 9: In general, both the energy functions above are 
generated by symmetric positive semi-definite matrices, which 
depend heavily on the chosen system representation structure. 
From physically motivated energy additivity principle (EAP): 

[ ] [ ]
1

(.) (.) , (.)
n

i i i
i

E x E x x R
=

= ∈∑                  (59) 

it follows that only such system representation structures can be 
accepted as physically correct, which are not in contradiction 
with EAP, or equivalently for which the Grammian matrices, 
generated by state equivalent triplets {A, B, C} are diagonal 
and non-singular, i.e.,  for which: 
 { }1 2 or diag , ,..., , 0o c n iW W W W δ δ δ δ= ⇔ = ≠   (60) 
Definition 6: (Energy additivity property)  
Any element of the group ℘ of state equivalence transforma-
tions will be called physically correct, or physical structure 
preserving, if the energy additivity property (46) is an invariant 
of the group ℘. 

As a consequence of mathematical and physical correctness 
requirements any reconstructed structure obeys the causality 
principle, energy conservation principle and has the state 
minimality property, but concerning the total number of 
independent structure parameters no explicit requirement has 
been postulated yet.   

 
 

8.  PARAMETER MINIMALITY 
 

It is of crucial importance to eliminate not only redundant state 
variables, but all redundant structure parameters, too.  
Definition 7: (Parameter minimality) 
A correct internal structure has the property of parameter mini-
mality if removing any of its structural parameters decreases the 
generality of equivalent external system representation.  
Example 3: Let a class of external representations is given 
  ( ) ( 1)

1 1( ) ( ) ... ( ) ( ) 0n n
n ny t a y t a y t a y t−
−+ + + + =�             (61) 

For full generality a parameterization by n independent 
constants a1, a2, …, an  is needed.  For n = 3, it is possible to 
find a physically correct internal structure of the matrix A 

     

2

1 1 1

1 2

1 2

- , ,

A = 0

0

κ α β

α α

β α

−

− −

 
 
 
  

                                   (62) 

induced by the (arbitrary ) choice of the measured output 
       [ ]1 1 1( ) ( ) C ,0, ..., 0y t x tκ κ= ⇔ =                  (63) 
but it can be overparameterized Fig. 5.  
 

y t( )x3 x2 x1
α1α2

-α1-α2

-β1

β1

κ1

1
2κ-

 
 

Fig.5. Correct but parameter non-minimal structure 
 
Thus the question of  parameterically minimal structures arises. 
It is easy to deduce that for the correct structure above the total 
number of  N  parameters is required for its parameterization: 

               
1 ( 1) 1 , 1,2,3,...
2

N n n n n= − + ≥ =                 (64) 

Intuitively, for n = 3 the right answer seems to be evident from 
the signal-flow graph  Fig. 5., i.e. that any one element of the 
set {α1, α2, β1} is redundant and can be removed (put equal to 
zero). To demonstrate that the hypothesis is false, the 
observability of (A, C) has to be tested; using standard 
technique we get the necessary and sufficient condition : 
                 2 2

1 2 1 1det 0 ( ) 0oH κ α α β≠ ⇔ + ≠                  (65) 
and  the right answer is  κ1 ≠ 0, α1 ≠ 0, α2 ≠ 0, β1 = 0, or  α1 = 
0, and  κ1 ≠ 0, β1 ≠ 0, α2 ≠ 0, as shown at the Fig. 6. 
 

y t( )x2 x3 x1

α2

-α2

κ1

β1

-β1

1
2κ-

 
 

Fig 6:Parameter minimal equivalent correct structure 

y t( )xn x1

κ1

x2xn-1 xn-2

- 1
2κ

 
 

Fig 7: Parameter minimal  correct  chain  structure 
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Remark 10: In spite of the fact that the algebraic structures 
differ, they represent the same chain topological structure of the 
parameter minimal signal-flow graph Fig 7. 
The physical interpretation of the internal interactions is 
visualized for βi = 0 by the decomposition at the Fig. 8. On the 
chain structure discussed above are based different classes of 
physically realizable filters, called asymptotic filters, as used for 
filter banks design in [4]. 
 

Subsystem
#1
    

Subsystem
#2

- , .α 22 α

y t( )
-α1

α1

x2

-α3

α3

x4

κ1

1
2κ

x1

x1x3

 
 

Fig.8: Physical interpretation of the system interactions 
 

Now, if  we put α2 = 0 then the natural requirement of sufficient 
generality will no more hold, because the equivalence 
transformation (44) does not exist for detT = 0, and the resulting 
characteristic polynomial reduces to:       
   2 2

1 1
2 2

1 2 1 1 2( ) ( ), ,P s s s a s a a aκ α β+= + + = =  (66) 
The structure analysis above can be summarized as: 
Theorem 3: (Parameter minimality)  
For a class of linear time-invariant finite dimensional 
parametrically minimal physically correct system 
representations the state minimality, and sufficient generality 
are equivalent.  
It is obvious that introducing non-vanishing inputs the same 
analysis  could be made using  dualized concepts.  

 
 

9. STATE VELOCITY SPACE AND  
GENERALIZED HESSENBERG STRUCTURE  

 
It is challenging to find such a structure of interactions between 
the elements of the constituent set that the intrinsic relation-
ships between fundamental system properties such as dissipativ-
ity and minimality will be clearly displayed.  
In order to achieve the aim, it seems to be reasonable to charac-
terize the minimal dimension of the state velocity space struc-
turally. We start with a well known concept of the Hessenberg 
matrix : 
Definition 8: (Hessenberg structure of a matrix)  
Let A is a n-th order rectangular matrix. We say that the matrix 
A has the Hessenberg structure if it holds    

               ,1 0, 1                     o

i ja j i= > +                         (67) 

              , 1 , 12 0  and  1    ,    ( )o

i i i ia sign a
+ +
≠ =                   (68) 

Definition 9: (Hessenberg structure  of a  vector field) 
A vector field f  has the Hessenberg structure if it holds  

               1 0, 1          o i

j

f
j i

x

∂
= > +

∂
                                  (69) 

              
1 1

2 0,  1         o i i

i i

f f
sign

x x
+ +

∂ ∂
≠ =

∂ ∂

 
 
 

                  (70) 

Let  n-th order  nonlinear system representation is given  

         
0

0
{ } : ( ) [ ( )] ( ), ( ) ,

( ) ( ),

S x t f x t B u t x t x

y t C x t

ℜ = + =

=
          (71)  

and the matrices B and C have the form 
                             C  = [c1, 0, … , 0  ] ,                                 (72) 

                           TB = [ 0, 0, … , bn ]                                (73)       

Definition 10: (Generalized Hessenberg structure of a system) 
We say that a system representation (15), (16) has the General-
ized Hessenberg structure if the vector field f has the Hessen-
berg structure  

             1 1    0,       o i

j

f
j i

x

∂
= > +

∂
                                   (74)    

             
1 1

2 0 1    ,       o i i

i i

f f
sign

x x
+ +

∂ ∂
≠ =

∂ ∂

 
 
 

                  (75) 

and in addition  if it holds 

            1 1
1

1 1

3 0, 1          o h h
c sign

x x

∂ ∂
≠ =

∂ ∂

 
 
 

�                 (76)   

           4  0, 1         o n n
n

n n

f f
b sign

u u

∂ ∂
≠ =

∂ ∂

 
 
 

�                (77) 

Remark 11: Notice that the Jacobian matrices have a properly 
defined structure motivated by the system structure correspond-
ing to the cascade connection of the elementary subsystems 
according to the Fig 9.     

Fig..9. Generalized Hessenberg structure 

Fig.10. Internal structure of an elementary subsystem Sk 
 

For the internal structure of subsystems Sk see Fig.10. The 
resulting system representation in Generalized Hessenberg 
structure is obviously always controllable and observable, i.e. 
minimal and is explicitly described by      

1x� = f1( t , x1  , x2  ) , 

2x� = f2( t , x2  , x3  ), 

3x� = f3( t , x3  , x4 ),                                                  (78) 
.   .   .   .   .   .   .   .   .   .   .   .    

1nx
−
� = fn-1( t , xn-1  , xn ), 

nx� = fn( t , xn  )  +  u 

[ ]( ) ; ( )y t h t x t=  = x1 (t)                                                             (79) 

where the set of external interactions is given by 

       u(t) = un(t),                        (80) 

       y(t) = x1(t)                            (81) 

and the set of internal interactions is expressed by                                             

          ui =  xi+1 , i=1,2,...,n-1                   (82) 

          yi =  xi ,    i=1,2,...,n                        (83) 

∫
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10. BI-ORTHONORMAL BASIS OF STATE VELOCITY  
SPACE AND PHYSICALLY CORRECT STRUCTURE 

 
In order to specify the physically correct internal system struc-
ture  in the sense of energy conservation principle validity [3] 
we introduce a structural representation  

                     
*

*

{ } :     ( )

               ( ) ( )

* *
S Qx(t) = A x(t)+ B u t

y t C x t

ℜ

=
                    (84) 

Let us assume that each elementary subsystem Sk of the con-
stituent set  is dissipative, i.e. it holds 

         0 1, 2:      ,      , .....i

i

f
i i n

x

∂
∀ < =

∂
               (85) 

Then the simplest form of the structural matrix *A in the Gener-
alized Hessenberg representation reads 

       *

1 1 0 ... 0 0 0

0 1 1 ... 0 0 0

0 0 1 ... 0 0 0

: : : ::: : : :

0 0 0 ... 0 1 1

0 0 0 ... 0 0 1

A

−

−

−
=

−

−

 
 
 
 
 
 
 
 
 

                (86) 

Now, let the structural matrices * *, ,Q B C be given by 

* *

1 0 0 0 0 1

1 1 0 0 0 0
1 1 . . . .

, , ( )1 1 ... . . . .
. 1 . 0 0 . .
. . . 1 0 0 0
. . . 1 1 1 0

TQ B C

−

−

= = =−

−

−

     
     
     
     
     
     
     
     
     
          

    (87)                                                                                                                       

where the columns q1, q2 , … , qn of the matrix Q form a bior-
thonormal basis in the state velocity space given by 
       qk + qk+1 =  ek  , k = 1,2, … , n-1 , qn = en                       (88) 
Because Q is always invertible, we have  

                          
1

1 0 0 ... 0 0
1 1 0 ... 0 0
0 1 1 ... 0 0
0 0 1 ... 0 0
. . . . . .
0 0 . ... 1 0
0 0 . ... 1 1

Q − =

 
 
 
 
 
 
 
 
 
  

          (89) 

and a resulting generic structure of the matrix A follows 
 

    
1 *

1 1 0 0 ... 0 0

1 0 1 0 ... 0 0

0 1 0 1 ... 0 0

0 0 1 0 ... 0 0

: : : : ::: : :

0 0 0 0 ... 0 1

0 0 0 0 ... 1 0

A Q A−

−

−

−

= = −

−

 
 
 
 
 
 
 
 
 
  

          (90)  

11.  STRUCTURE PARAMETERIZATION  
 

Our goal is to specify a class of strictly causal system represen-
tations for which a form of energy conservation such as the 
Generalized Tellegen’s principle holds. We start with the hy-
pothesis that it is not the physical energy by itself, but only a 
measure of distance from the system equilibrium to the actual 
state x(t), what is needed for this aim. Thus, instead of the 
physical energy a metric ρ[x(t), x* ] will be defined in a proper 
way, and for an abstract energy E(x) we then put formally: 

             2 * * 21 1
E(x) x(t), x || ( ) ||

2 2
x t xρ = −  �         (91)  

It has been shown in [3], [4], that the resulting state equivalent 
system representation in dissipation normal form, correspond-
ing to the derived generic structure (88), (90) is described by a 
triple of matrices { , ,A B C } as follows       

  

1 2

2 3

3 4

1

, , 0, 0, , 0, 0
, 0, , 0, , 0, 0

0, , 0, , 0, 0
,

0, 0, 0, 0, , 0,
0, 0, 0, 0, 0, 0

nn

n

A

α α
α α

α α

α α
α

−

 
 
 
 
 
 
 
  
 

−
−

−
=

−
−

"
"
"

# # # # % # #
"

"

  (92) 

               
1

2

3

1

0
0

,  

0
0

T

n

n

C B

βγ
β
β

β
β

−

  
  
  
  
  
  
  
  

      

= =
##

                         (93) 

It is easy to show that the set of real design parameters αi, γ, βi 
must satisfy the following fundamental consistency conditions: 
1. { } 12, 3, 0 0, ..., : ,ii i n α α∀ ∈ ≠ < ⇔  
           for structural  asymptotic stability   
2. { }2, 3, 0 0, 0, ..., : , :i ii i n iα βγ∀ ∈ ≠ ≠ ∃ ≠ ⇔  
           for structural minimality                        
The generic internal structure of an n-th order continuous-time 
strictly causal system in dissipation normal form is shown at the 
Fig. 11. 
 

 
 

Fig. 11. Physically correct state space representation of 
continuous-time strictly causal system 

 
 

12.  DISSIPATIVITY AND STABILITY ANALYSIS 
  
Example 4.  (Stability analysis of a linear system) 
Let the n-th order system representation is given by the linear 
differential equation with constant coefficients 

   (6) (5)
1 4 5 6 0... ( ) ( ) ( )y a y a y t a y t a y t+ + + + + =�� �    (94) 
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with characteristic polynomial 

   6 5 4 2
1 2 4 5 6( ) ...P s s a s a s a s a s a= + + + + + +     (95) 

The matrix A in the dissipation normal form is given by 

1 2

2 3

3 4

4 5

5 6

6

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

A

α α

α α

α α

α α

α α

α

−

−

−
=

−

−

−

 
 
 
 
 
 
 
 
 

            (96)    

and the corresponding representation reads 

          

1 1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3 5 5

5 5 4 6 6

6 6 5

1

( ) : ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

S x t x t x t

x t x t x t

x t x t x t

x t x t x t

x t x t x t

x t x t

y t x t

α α

α α

α α

α α

α α

α

γ

ℜ = − +

= − +

= − +

= − +

= − +

= −

=

                 (97) 

It follows that the parameters { }1, 2, ..., 6,ia i∈ are given by 

1

2 2 2 2 2

2 3 4 5 6

2 2 2 2

1 3 4 5 6

2 2 2 2 2 2 2 2 2

2 4 5 6 3 5 6 4 6

2 2 2 2 2

1 3 5 6 1 4 6

2 2 2

2 4 6

1

2

3

4

5

6

( )

( ) ( )

( )

a

a

a

a

a

a

α

α α α α α

α α α α α

α α α α α α α α α

α α α α α α α

α α α

+ + + +

+ + +

+ + + + +

+ +

=

=

=

=

=

=

  (98) 

Recall that the necessary and sufficient condition for existence  
of  the  unique equilibrium state  x*= 0  is given by 

                          2 2 2

6 2 4 6det 0A a α α α= = ≠                     (99)                                                                                                
From the existence of a unique equilibrium state point of view, 
the dissipation parameter α1, as well as interaction parameters 
α3, α5   can be chosen  arbitrary. For energy function E it holds:  

             [ ] 1 1 12 22

2 2 2
1

( ) ( ),0 ( ) ( )
n

i
i

E x t x t x t x tρ
=

  = = = ∑        (100)  

* *

2 *

1 ( ) 0 ( ) , ( 0)

2 ( ) ( ) 0 ( ) 0 ( )

o

o

i i

E x x t x x

x t R x t E x x t x

= ⇔ = =

∈ ⇔ ≥ ⇒ > ⇔ ≠
   

For the derivative of the state energy function E(x) along the 
system representation (97) we get 

    
{ }

2 21
1 1 2

d

d

( )
( ) . ( )

s

E t

t
x t y t

α
α

γℜ

= − = −        (101) 

where γ  is a real output scaling parameter 
                                0  <  γ  <  ∞                                          (102)  

Thus, for non-zero output dissipation power 2 ( )y t the signal 
energy conservation principle holds if and only if:                         

                     2( ) ( )P t y t=    ⇔    α1 =  γ2 > 0           (103) 

Remark 12:  Notice that the dissipation parameter α1 is the 
only element of the matrix A, which sign separates the system 
dissipativity from its anti-dissipativity. 
The critical value of α1 = 0, corresponds to the system conserva-
tivity and separates stability of the equilibrium state from its 
instability.   
Remark 13: Notice, that if we put α5 = 0, then the state vari-
ables xi, i = 5, 6 become unobservable by the output y ; thus 
only the first isolated subsystem with the state variables xi, i = 
1,2,3,4,  which is observable, will be asymptotic stable, while 
the second one will oscillate on  the constant  energy level, (see 
Fig. 13.c for energy evolution). Similarly, if we put α3  = 0, then 
the state variables xi,  i = 3,4,5,6  become unobservable by the 
output y, and only the observable subsystem                    

               

1 1 1 2 2

2 2 2

1

( ) ( ) ( )

( ) ( )

( ) ( )

x t x t x t

x t x t

y t x t

α α

α

γ

= − +

= −

=

�

�               (104) 

 
 

Fig.12. Evolution of the output power P(t) 
a)   α1 = 0, conservativity,  b)   α1 > 0, α3 = 0, stability, c)  α1 > 
0, α5 = 0, stability,  d)   α1 > 0, αk ≠ 0, k = 2,3,…,n, asymptotic 

stability,  e)   α1 < 0, αk , k = 2,3,…,n, arbitrary,  instability 
 

 
Fig. 13. Evolution of the state energy E[x(t)] 

               
If needed, we can determine the parameters αi , i = 1, 2,…, n  
from the Eqn. (98) then we get: 

             

1 1 1

1 3 3 2
2

1 1

2 2

1 2 3 3 1 4 3
3

1 2 3 1 2 1

3

2 1

,

( )

,    4, 5, 6, ...,  k k

k k

k

a

a a a

a

a a a a a a

a a a a

k n

α

α

α

α −

− −

= = ∆

− ∆
= =

∆

− − ∆
= =

− ∆ ∆

∆ ∆
=

∆ ∆
=

                (105) 
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where the new parameters  k∆  , k= 1, 2, …, n can easily be 
recognized as diagonal minors of the well known Hurwitz 
determinant Using the Eqns. (40), (29) together with the re-
quirement  αk∈R, the following set of equivalent necessary and 
sufficient conditions of the asymptotic stability can be obtained 
in general finite dimensional case: 
                     1 1,Rα α∈ > 0     ⇔   ∆1      >  0    

                     2
2 2

1

, 0 0Rα α
∆

∈ ≠ ⇔
∆

>     

                    3
3 3

1 2

, 0 0Rα α
∆

∈ ≠ ⇔ >
∆ ∆

             (106)                                                                             

                   3

2 1

, 0 0n n
n n

n n

Rα α −

− −

∆ ∆
∈ ≠ ⇔ >

∆ ∆
 

The resulting conditions are obviously equivalent to the set of 
the well-known Hurwitz stability conditions:           
                                 k∆  > 0, k= 1, 2,  … , n                        (107) 
It means that existing linear algebraic methods for stability 
analysis can be seen as a special case of methods based on the 
proposed signal energy-metric approach. Moreover the pro-
posed state energy interpretation makes it possible to gain a 
better insight into the classical results of stability theory. 

 
 

13.  GENERATION OF LYAPUNOV FUNCTIONS 
  
Example 5. Let’s consider a linear system given in the form 
        (4) (3)

1 2 3 4( ) ( ) ( ) ( ) ( ) 0y t a y t a y t a y t a y t+ + + + =�� �    (108) 

gained by an approximate linearization procedure, and let the 
state variables be defined by the standard way as follows 
           (3)

1 2 3 4, , ,x y x y x y x y= = = =� ��                    (109) 
Then the observability matrix is given by Ho = I, while the 
observability matrix oH  of the state equivalent representa-

tion { }Sℜ is triangular and invertible. It is easy to show that 
the Lyapunov function V can be computed by isometric trans-
formations of the state space coordinates: 

              [ ] 11

2
( ) ( ) . . ( )T T

o oV x t x t H H x t
−

=                    (110) 

and it can be explicitly expressed 

              

2

2 1
1 1 2

2

1
1 2 3

2 2

2

3 2 3 2 3

1 1

2

1
. . .

V x x x

x x x

α

α α

α α

α α α α α

= + + +

+ + +

  
  

 
 +  

  

      (111)     

 
 

14.  NON-LINEAR STABILITY ANALYSIS 
 

Example 6.  (Generalized Van der Pol system)  
Let us consider a simple non-linear system given by  

      2

2( ) ( ) ( ) ( ) 0y t y t y t a y tε α β+ − + =  �� �           (112)                                                                      

If C is defined by C = [γ, 0], and  A(x)  is defined by the non-
linear dissipation normal form 

              

1 2

1 23

1 2

2

,
( , )

, 0

x a
A x x

a

ε α β− −
=

−

    
  

       (113) 

then the system representation is locally observable iff 

20, 0aγ ≠ >                                      (114) 
and the signal energy conservation principle gives 

             1 2 2

1 13
( )

d ( )
0,

dt s

E t
P P x xε α β

ℜ

= − ≤ = −        (115) 

It follows that the unique zero equilibrium state * 0x =  is as-

ymptotically stable in the region 2D X R⊂ ⊂  

          2 2

1 2 1 1 2and
3 3

, :D x x x x x
α α

β β
= < + <
 
 
 

        (116) 

if  ε > 0,  α > 0,  β > 0, a2 >0.     
Example 7. (Generation of  non-quadratic Lyapunov functions)  
Let the same non-linear system be given      

          2

2( ) ( ) ( ) ( ) 0y t y t y t a y tε α β+ − + =  �� �       (117)                          

but instead of the structure the state vector x(t)  is defined by  
           1 2, /x y x dy dt= =                                 (118) 

Then the corresponding system representation is structurally 
observable with the observability matrix   Ho=I, and from the 
signal energy conservation principle  

                1 2 2

1 13
( )

d ( )
0,

dt s

V t
P P x xε α β

ℜ

= − ≤ = −     (119) 

a unique Lyapunov function V(x) can be determined by isomet-
ric transformations. For  α = β = a2 = 1 we get  

               

1 1 22 6 2 4 2 2
1 1 12 9 3

2 3 2
1 2 1 2 23

1

2

( ) ( )V x x x x

x x x x x

ε ε ε

ε ε

= − + + −
− + + 

   (120)                         

and for linear conservative case (ε = 0) it reduces to 

                                 ( )2 2

1 2

1
2( )V x x x= +                         (121) 

 

 
Fig. 14. Phase portrait of typical system trajectories, 

estimated and actual domain of attraction, 
 and constant levels of the state energy E[x(t)]=V[x(t)], 

 ( for ε =1, α =β =a2 = 1) 
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Example 8.  (Lewis servo-system)  
Let us consider another well known non-linear system given by  
    [ ]1 2( ) 1 ( )sign[ ( )] ( ) ( ) 0y t a y t y t y t a y tβ+ − + =�� �     (122)  

  
[ ]1 1 1 2

1 2

2

1 ( )sign[ ( )] ,
( , )

, 0

a x t x t a
A x x

a

β− −
=

−

 
 
  

      (123) 

with α2 > 0, and α1, β as arbitrary real design parameters. 
A unique Lyapunov function V(x) can be determined by isomet-
ric transformations as the state energy E(x.). We get: 

   
[ ] [ ]

[ ]

2 2 4 2 3

1 2 1 1 1 1 1

2 2 2 2

1 1 2 1 1 1 1 1 2 2

1
4, sign

sign ( 1) 2

( )

( )

E x x a x a x x

a x x x a x a x x x

t

t

β β

β

= − −

− + + + +
   (124) 

 
Fig. 15. Phase portrait of typical system trajectories, 

estimated domain of attraction, 
and constant levels of the state energy E[x(t)]=V[x(t)], 

( for α1 =1, β =α2 = 1) 

 
Fig. 16. Evolution of the state energy E[x(t)], for α1>0, 

 i.e. for asymptotically stable zero equilibrium state, 
and for periodic solution - unstable limit cycle. 

 
Fig. 17. Evolution of the state energy E[x(t)], for α1 < 0, 

 i.e. for unstable zero equilibrium state, 
and for periodic solution - asymptotically stable limit cycle. 

The dissipation power P(t) is given by   

   2
2 1 1 1 1

1
2

( )]0: 2 . 1 sign[ tdEa a x x x
dt

β 
  

∀ ≥ = − −      (125)  

For linear case (β= 0) and for α2 = 1 the energy reduces to 
    [ ] 2 2 2

1 2 1 1 1 1 2 2, ( 1). ( ) 2 ( ). ( ) ( )E x x a x t a x t x t x t= + + +      (126) 
Example 9.  (Generation of chaos in a strictly causal system) 
Let a 4th order system be given by 

1 1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3

x x x

x x x

x x x

x x

α α

α α

α α

α

= − +

= − +

= − +

= −

�

�

�

�

[ ]1

2

3

4

2 21 10 ( )sign[ ( )]
1
1

1.65

x t x tα

α
α

α

α

= =

− −   
   
   
   
     

  (127)   

 
Fig. 18. 2-D  projection chaotic system trajectories 

 
Fig. 19. Evolution of non-periodic- chaotic state energy E[x(t)] 

 
Fig. 20. Evolution of the chaotic state energy E[x(t)] - zoom 

 
From diagrams in the Fig.13., Fig.16., Fig.17., and the Fig.20. 
it is obvious that in all cases the local energy changes can be 
characterized either as monotone decreasing or as monotone 
increasig on some subintervals of the time interval [ 0, ∞). The 
only difference is that in the case of chaotic behavior the length 
of these dissipativity/anti-dissipativity intervals is totally 
irregular, while in case of non-linear but periodic behavior the 
length of dissipation and/or antidissipation intervals is constant, 
given by the period of oscillations and by the specific form of 
nonlinearity. The interpretation of dissipative, conservative and 
anti-dissipative linear cases, as well as aperiodic asymptotic 
transient solutions in non-linear systems, is quite plausible. 
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15.  PHYSICAL STRUCTURE RECONSTRUCTION 
 

Example 10.  (Reconstruction of physical structure for n=4) 
Let’s consider a linear 4-th order system with 1 informational 
output and 3 independent input signals, described by an external 
representation. Find an internal structure of the given system in 
such a way that the resulting physical system representation will 
be physically as well as mathematically correct. 
Let’s  assume that the system is known to be asymptotic stable  
with  2 dissipative and 4  energy accumulation elements. In such 
a case the physically correct internal system representation 
ℜ{S} can be described as follows: 

                        ℜ{S}: dx(t)/dt=Ax(t)+Bu(t),               (128)   
                              y(t) = Cx(t) ,                                  (129) 

                                       u3(t) = Kx(t) ,                                 (130) 
and the matrices A, B, C, K  are given in the form (Fig. 21.) 
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3 4
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0 0
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0 0 0
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α α
α α

α α
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,

1

2

0 0
0 0 0
0 0
0 0 1
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β

β
=

 
 
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, 

1

2

3

( )

( )

( )

t

t

t

u

u u

u

=

 
 
 
  

    (131) 

          [ ]1 0 0 0C = ,    [ ]40 0 0K k−=      (132) 
and the abstract form of state energy is defined by 

     [ ]2 2 2 2 2
1 2 3 4

1

2

1
( ) ( ), 0

2
{ }E x x t x x x xρ = + + +�       (133) 

 
Fig. 21. Physically correct structure of the given representation  
  
Let us consider an electrical circuit (for example) as a physical 
realization of the system under consideration. If the inputs u1(t), 
u2(t), are defined by voltages of an electrical circuit 
    

1 01 02 2 03 02( ) ,   ( )u t u u u t u u= − = −        (134)                                             
and the state variables x1, x2, x3, x4 are defined as currents and 
voltages of the circuit then, for a proper state scaling transfor-
mation 

        
1 1 1 2 2 2 3 3 3 4 3 3

,  ,  ,  x L i x C u x L i x C u= = = =      (135)                                                                                             

the total system energy in new (physical) state variables takes 
the form: 

                  2 2 2 2

1 1 2 2 3 3 3 3

1

2
E(x) { }L i C u L i C u= + + +              (136) 

and the standard form of energy conservation principle holds. 
One of possible physical structures is shown in the Fig. 22.              

 
 

Fig. 22.Physical example of the reconstructed structure 
 
 

16. CONCLUSIONS 
 

In the present paper basic concepts concerning new problem of 
system structure reconstructability, dissipativity, conservativity, 
state minimality, parameter minimality, internal stability, insta-
bility and chaos have been examined from a unified structural 
point of view. Both the linear as well as non-linear state-output 
system representations are discussed. 
The work relates some fundamental attributes of real-world 
situations such as causality, mathematical and physical 
correctness and different forms of conservation laws to specific 
notions  and  results of  the electrical circuits theory, as well as 
to some basic approaches and concepts of  general system 
theory, such as state minimality, signal power, signal energy, 
equivalence relations, controlability and observability 
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