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ABSTRACT 

The design of an optimum front-end module for an automatic 
speech recognition system is still a great effort of many research 
teams all over the world. Prepared paper wants to contribute 
partly to these discussions. It is especially aimed at feature 
decorrelation techniques based on Maximum Linear Likelihood 
Transform (MLLT) applied at a different level of matrix 
clustering. Also the comparison of the MLLT with other 
decorrelation techniques will be discussed. 
Key words: speech parameterization, decorrelation techniques, 
Maximum Linear Likelihood Transform     

1.  INTRODUCTION 

The effort to select suitable features containing relevant 
information for speech recognition brought researchers after 
thorough analysis of process of human hearing to 
parameterization techniques based on mel frequency cepstral 
(MFCC) or perceptual linear prediction (PLP) cepstral 
coefficients. An experience with speech recognition showed that 
it is beneficial to use also delta and delta-delta coefficients 
which decrease the word error rate (WER) but simultaneously 
increase the dimension of feature space (usually 3 times). Even 
though the original set of features of the MFCC or the PLP 
parameterizations is more or less correlated then after addition 
of delta and delta-delta features the information redundancy of 
elements in feature vectors increases. Moreover, a large amount 
of (correlated) features make the training and recognition 
process more difficult.    
Let us remind that speech in LVCSR systems is predominantly 
modeled by hidden Markov models (HMMs). As fundamental 
attributes of this concept can be considered output probabilities 
tied to each state of model and modeled by multidimensional 
Gaussian distributions (simply by Gaussians) or more exactly 
by mixtures of Gaussians. An application of mixtures of Gaussi- 
ans for output probability modeling results from an effort both 
to catch the possible non-Gaussian nature of density functions 
which are associated with a particular state and to model mutual 
correlation of elements in feature vectors (especially in case of 
Gaussian distributions which are determined by only diagonal 
covariance matrices). Because all output probabilities should be 
computed for each incoming feature vector it is useful notably 
for real-time applications to reduce often huge amount of 
computations which increase with a size of the dimension of 
feature space and also with the number of Gaussians. 
To reduce computation burdens associated with evaluating 
output probabilities we can apply some of following techniques: 
– To execute decorrelation of feature vectors and to use rather 

diagonal then full covariance matrices for modeling of 
output probabilities. For these purposes usually some 
orthogonal transforms based on DCT (Discrete Cosine 

Transform) or NPS (Normalization of Pattern Space) are 
applied [1]. 

– To reduce a dimension of pattern space using projection of 
feature vectors from the original space to the space with 
lower dimension. A typical approach is based on PCA 
(Principal Component Analysis), LDA (Linear Discriminant 
Analysis) or HLDA (Heteroscedastic LDA). 

 – To pass from the triphone- to the monophone-based 
structure of models where an influence of suppressed 
dependencies among features is alleviated mainly by 
enhancing number of Gaussians in individual states of 
monophone models. LVCSR systems with triphone-based 
structure work typically with 30 to 100 thousand of Gaussi- 
ans, whereas systems working with monophone-based 
structure uses from 5 to 10 thousand Gaussians [2], [3]. 

There are of course many other clever approaches, which speed 
up computations or choose only relevant states with associated 
Gaussians for evaluations. Generally, it is possible to say, that 
both the pass from the triphone- to the monophone-based 
concept and also various transformation techniques on one hand 
decrease the number of computations but on the other hand they 
cause increasing the word error rate (WER). Moreover, in case 
of transformations applied in a level of feature vectors, there is 
usually unfeasible to find the only transformation which could 
decorrelate all elements of feature vectors of all states. 
Recently the new approaches have been designed, which 
alleviate above mentioned decrease of recognition accuracy 
(Acc) simultaneously with preserving high computation 
efficiency. These techniques is based on Maximum Linear 
Likelihood Transform (MLLT), which supposes that one or 
more transformation matrices will be tied with states (more 
exactly tied with covariance matrices belonging to individual 
states) of hidden Markov models. Transformations are designed 
according to a group of Gaussians which should be 
decorrelated. If the transformation is built separately for each 
individual mixture (Gaussian), then we could obtain the system 
which is identical with the system using full covariance 
matrices (of course we wouldn’t get any computation savings in 
this case). Therefore it is reasonable to find a suitable tradeoff 
between selected groups of Gaussians that should be 
decorrelated by individual transformation matrices and the 
recognition accuracy. 

2. EXPERIMENTAL CONDITIONS 

All experiments were performed with the high-quality speech 
corpus. This corpus is a read-speech database consisting of the 
speech of 100 speakers. Each speaker read a same portion of 40 
sentences. The database of text prompts from which the 
sentences were selected was obtained in an electronic form from 
the web pages of Czech newspaper publishers. A special 
consideration was given to the selection of the mentioned set of 
40 sentences, since they provide a representative distribution of 
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the more frequent triphone sequences (reflecting their relative 
occurrences in natural speech). The corpus was recorded in the 
office where only the speaker was present. Recordings were 
performed using the notebook IBM TP 760 ED owing to a very 
silent operation of this computer (it hasn’t any fan). Each 
sentence was recorded simultaneously by two microphones. The 
close-talking microphone (Sennheisser HMD410-6) yielded 
utterances of a high-quality, the desk microphone (Sennheisser 
ME65) recorded utterances including common office noise. The 
prompting/recording sessions yielded totally about 80 hours of 
speech, all of which was digitized into pairs of single-channel 
files at 44.1 kHz with 16-bit resolution. 
Test set for high-quality speech was selected from utterances of 
speakers who were not included in training set. The test set 
consists of 100 sentences randomly selected from utterances of 
4 different speakers (4 speakers x 25 sentences) The vocabulary 
in all our test tasks contained 475 different words. Since several 
words had multiple different phonetic transcriptions the final 
vocabulary consisted of 528 items. There were no OOV words. 
In all recognition experiments a language model based on 
zerograms was applied.  It means that each word in the 
vocabulary is equally probable as a next word in the recognized 
utterance. For that reason the perplexity of the task was 528. 

3. FEATURE SPACE TRANSFORMATION 

During feature extraction and pattern space decorrelation 
experiments we tested such techniques as discrete cosine 
transform (DCT) and linear discriminant analysis (LDA). The 
goal of mentioned techniques is to find a transformation, which 
transforms given pattern space to the space with decorrelated 
features and/or to the space of lower dimension.  

Discrete Cosine Transform (DCT) 
Discrete cosine transform is used in order to decorrelate features 
in the pattern space. This is the standard method applied to the 
log-energies of output filters (LogEF) during the MFCC 
parameterization. DFT is defined as 
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where vi  is i-th  coordinate of the input vector v and yj is j-th 
coordinate of the corresponding output vector y.  

Linear discriminant analysis (LDA)   
For the c-class problem the linear discriminant analysis involves 
c1 discriminant functions. Thus, the projection is from the 
original n-dimensional feature space to a m=(c1)-dimensional 
space. What we seek now is a transformation matrix WT, which 
in some sense maximizes the ratio of the between-class scatter 
matrix to the within-class scatter matrix. In our case the within-
class scatter matrix SW is defined as 
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where Pi is the a priory probability of the class i and Si is the 
covariance matrix computed from the feature vectors belonging 
to the phoneme class i . Si can be expressed as 
                        S i =  E {( v - i )( v - i )T} ,                           (3) 

where i is the mean vector of the class i . Between-class scatter 
matrix is defined as 
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where   is the global mean vector 
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It is well known that the rows of an “optimal” transformation 
matrix WT are the generalized eigenvectors that correspond to 
the largest eigenvalues of the matrix (SW

1 SB). The input vector 
v of dimension n from the original pattern space can be then 
transformed to the “optimum” space of dimension m=c1 (there 
are only c1 nonzero eigenvalues) in accordance with the 
equation 
                                            y = WTv                                      (6) 

Let us notice that if the dimension n of the original feature space 
is lower than m=c1 then a dimension of a new pattern space 
stays after the transformation usually the same (equal to n).  
 
Recognition experiments 
In recognition experiments we used log-energies of 27 output 
filters of the MFCC parameterization as features for a basic 
description of speech patterns. For comparison of individual 
transformation techniques we used HMMs based on monophone 
structure. The goal was to investigate an influence of a number 
of mixtures (Gaussians) assigned to individual states of HMMs 
to the recognition accuracy. In Table 1 and 2 you can find 
results of many experiments in case of diagonal and/or full 
covariance matrices belonging to individual Gaussian mixtures. 
The second column shows results for feature vectors built as 12 
DCT coefficients + 12 delta + 12 delta-delta. The third column 
brings results after additional processing of above mentioned 36 
dimensoin feature vector using LDA transform to the space with 
dimension of 26. And finally the fourth column gives results of 
LDA transform of feature vectors composed of log-energies of 
27 output filters of the MFCC parameterization + corresponding 
27 delta + 27 delta-delta to the dimension of 36.  

Diagonal Covariance Matrices Number 
of 

mixtures DCT(36) DCT(36)→ LDA(26) LDA(81→36) 

1 73.31 49.21 24.18 
4 86.44 66.57 49.78 
8 89.53 71.45 62.84 

12 90.39 74.68 64.79 
16 91.18 76.97 68.79 
20 92.61 78.05 68.94 

Table 1. Recognition accuracy for increasing number of 
mixtures modeled by diagonal covariance matrices.  

Let us notice that for DCT(36)→ LDA(26) in Table 2 it was 
able to compute only HMMs with 8 Gaussians. It was probably 
owing to ill-conditioned matrices during estimation of 
parameters of covariance matrices (probably due to a large 
space and only few examples for some phonemes). 
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Full Covariance Matrices Number 
of 

mixtures DCT(36) DCT(36)→ LDA(26) LDA(81→36) 

1 80.27 81.92 84.92 
4 90.17 89.67 90.24 
8 92.47 91.97 92.97 

12 92.55 92.15 - 
16 92,62 92.27 - 
20 93,11 92.47 - 

Table 2. Recognition accuracy for increasing number of 
mixtures modeled by full covariance matrices. 
 

4. MAXIMUM LINEAR LIKELIHOOD 
TRANSFORMATION 

Current speech recognition systems use HMMs with 
continuous parameters which are represented for each state by a 
Gaussian Mixture Model (GMM). A standard GMM with 
parameters given by m

jjjj ,, 1}{ == ΣμΘ π  is of the form 
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where m is the number of components, πj is the j-th component 
weight satisfying requirements: 1Σ0 1 =≥∈ = j
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is the component mean d
j R∈μ  and where Σj is a square 

covariance matrix of rank d. As was mentioned in Section 1, 
almost all currently used systems work with covariance matrices 
of diagonal form. This approach has in comparison with the full 
covariance model an evident advantage especially owing to 
lower computation and storage burdens and also due to robust 
parameter estimation. But this can be done only with 
assumption of elements of the feature vector which are 
independent. MLLT introduces a new form of a covariance 
matrix, which allows sharing a few full covariance matrices 
over many distributions. Instead of having a distinct covariance 
matrix for every component in the recognizer, each covariance 
matrix consists of two elements: a non-singular linear 
transformation matrix A shared over a set of components and 
the diagonal elements in the matrix Λj. Inverse covariance 
(precision) matrix 1−

jΣ is of the form  
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where Λj is a diagonal matrix with entries ,                   and 
where  T

ka is the kth row of the transformation matrix A.  
In contrast to other methods which follow similar goals, this 
technique fits within the standard maximum-likelihood criterion 
used for training HMM's. Parameters of the MLLT model 

m
jjjj ,,,Θ 1}{ == AΛμπ  are estimated using a generalized 

expectation-maximization (EM) algorithm. A function that 
should be optimized with respect to πj, µj, Λj, A is as follows 
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where N
ii 1}{ =x  is a given training set, γij is the aposteriori 

probability of j-th component of GMM and given vector xi. 
Optimizing (9) is unfortunately nontrivial especially because of 
Λj and A (optimizing πj, µj is done similarly to the classical 
HMM’s). The idea is to cycle through alternating estimations of 
A and Λj while keeping one of them fixed. The estimation of Λj 
for fixed A is done by  
                             ( ) .diag jj
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The estimation of A for fixed Λj has an elegant iterative 
algorithm  
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where T
ka is the k-th row of the transformation matrix A, ck is 

the k-th row vector of cofactors of the current estimate of A and 
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The mathematical theory of this algorithm [5] can be supported 
by following steps: 
1) Initialization of transformation matrix A with an identity 

matrix. 
2) Estimation of means and component weights is made using 

standard HMM formulas. 
3) Estimation of the set of component specific Λj (11) using 

the current estimate of the transformation matrix A. 
4) Estimation of the transformation matrix A using current set 

of m
jj 1}{ =Λ . Go to the step 3) until convergence is satisfied. 

5) Continuation by the step 3) until convergence is satisfied. 

Figure 1. Different level of covariance matrices clustering. 
 
As was described above the MLLT finds a global 
transformation matrix A for a „set“ of Gaussians. This set can 
be defined for example from the topological or the phonetic 
point of view. Presented paper proposes some experiments with 
topological point of view. There are basically four different 
levels of clustering, which are indicated in Figure 1:  
(1) There is only one transformation matrix for all components 

of all states of all monophones.  
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(2) There is one transformation matrix for all components of all 
states of individual monophone (it means that each 
monophopne has it’s “own” transformation matrix).  

(3) In this case one transformation matrix is connected to all 
components of individual state.  

(4) Each component has it’s own transformation matrix. This 
approach is very similar to the full covariance GMM model, 
because each symmetric positive definite (SPD) matrix has 
clear decomposition to the diagonal and transformation 
matrix (eigen values and eigen vectors). 

The goal of following experiments was to explore how the 
different level of clustering influences the recognition results 
(Acc). The experiments were performed simultaneously for two 
different feature sets: first one was DCT(36) and second one 
worked with LDA(26) after transforms DCT(36)→LDA(26). 
All experiments were made with 3-state monophone based 
models where each state was represented by GMM. Owing to 
the extremely time-consuming computation burdens, all tests in 
this case were carried out using only 8 components for each 
GMM. Recognition results are shown in Table 3.  

Table 3. Accuracy of recognition for a different level of 
covariance matrices clustering in MLLT.  

 
In the first row the recognition results of a “baseline” system 
with diagonal covariance matrix (no additional transformation 
was applied) is given. This model was used as a starting point 
for the MLLT optimization process. The second row shows the 
first case of MLLT clustering (one transformation matrix for all 
mixtures of all states and all monophones). Since we had 39 
different monophones there were used 39 different transforma- 
tion matrices, one for each monophone. Third variant uses 
3*39=117 transformation matrices (one transformation matrix 
was assigned to each state of each monophone). Finally, one 
transformation matrix was used for each component of each 
state and each monophone. In this case there were 3*39*8=936 
transformation matrices. Table 3 also mentions results obtained 
using full covariance model.  

5. CONCLUSION 

As was introduced in Section 1, decorrelation of features can be 
solved by a transformation of pattern space on a level of feature 
vectors. Experiments described in Table 1 and 2 indicate very 
good quality of the DCT in case of diagonal covariance matrices 
(here the DCT overcame the LDA). From results obtained for 
full covariance matrices it is evident better property of a 
transform based on the LDA. From results given in Table 1 and 
2 it is also evident that correlation dependencies and possible 
non-Gaussian nature of density functions can be modeled by an 
increased number of Gaussian mixtures associated with a 
particular state of a HMM. The feature decorrelation technique 
based on the Maximum Linear Likelihood Transform brings 

evident improvements in comparison with concept of pure 
diagonal covariance matrices (see results in Table 3). It is 
important in what level of covariance matrices clustering the 
MLLT technique will be employed. The more transformation 
matrices (A) is used the better recognition accuracy is obtained 
but the more computations accompany this process. Therefore it 
is reasonable to find a suitable tradeoff between selected groups 
of Gaussians that should be decorrelated by individual 
transformation matrices and the recognition accuracy. Next 
steps of our research will be aimed at finding this compromise 
and also at extending this approach to the triphone-based 
concept 

6.  ACKNOWLEDGEMETS 

This work was funded by the Academy of Science of the Czech 
Republic, project 1QS101470516. 

7.   REFERENCES 

[1] Psutka, J.V., Müller, L.: Optimization of some parameters 
in the speech-processing module developed for the speaker 
independent ASR system. –In: Proceedings of the 7 th World 
Multiconference on Systemics, Cybernetics and Informatics 
SCI’2003, Orlando, U.S.A., 2003, pp. 414-418. 

[2] Psutka, J.V., Müller, L.: Building Robust PLP-based 
Acoustic Module for ASR Application. –In: Proceedings of 
the 10th International Conference Speech and Computer 
SPECOM‘2005, Patras, Greece, 2005, pp.761-764. 

[3] Pražák, A., et al.:: Automatic Online Subtitling of the Czech 
Parliament Meetings. TSD 2006. Lecture Notes in Artificial 
Intelligence, Springer-Verlag, Berlin, Heidelberg, 2006. 

[4] Gales, M.J.F.: Semi-Tied Covariance Matrices for Hidden 
Markov Models. IEEE Trans. on Speech and Audio Proc. , 
vol.7, no.3, 1999, pp.272-281. 

[5] Olsen, P.A., Gopinath, R.A.: Extended MLLT for Gaussian 
Mixture Models or Modeling Inverse Covariances by Basis 
Expansion. IEEE Trans. on Speech and Audio Processing , 
January 2004. 

 

 # of A DCT(36) DCT(36)→ LDA(26) 
Diagonal - 89.53 71.45 
MLLT(1) 1 89.68 81.13 
MLLT(2) 39 90.82 88,24 
MLLT(3) 117 92.04 89.42 
MLLT(4) 936 92.25 91.78 

Full - 92.47 91.97 
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