

1

 Reprogrammable Controller Design From High-
Level Specification.

M. BENMOHAMMED 1,

1 Computer Science Department, University of Cne, 25000 Constantine, ALGERIE.
Email : ibnmyahoo.fr

M. BOURAHLA 2, and S. MERNIZ 1

2 Computer Science Department, University of Biskra, Biskra, ALGERIE.

ABSTRACT

Existing techniques in high-level synthesis mostly assume

a simple controller architecture model in the form of a single
FSM. However, in reality more complex controller
architectures are often used. On the other hand, in the case of
programmable processors, the controller architecture is
largely defined by the available control-flow instructions in
the instruction set.

With the wider acceptance of behavioral synthesis, the
application of these methods for the design of programmable
controllers is of fundamental importance in embedded system
technology. This paper describes an important extension of
an existing architectural synthesis system targeting the
generation of ASIP reprogrammable architectures. The
designer can then generate both style of architecture,
hardwired and programmable, using the same synthesis
system and can quickly evaluate the trade-offs of hardware
decisions.

Keys-Words: CAD-VLSI, Architectural Synthesis, High-
Level Synthesis, Controller, DSP, ASIC, ASIP, FSM,
VHDL.

1. INTRODUCTION
The advantage of ASIC solutions is their cost efficiency.

However, for competitive markets like consumer electronics
or telecommunications, ASICs often lack flexibility and
programmability.

In the past, commercial DSP processors were the only
choice when programmability was desired. More recently, a
trend emerged in the DSP community to build an
Application-Specific Instruction-set Processors (ASIP),

which offers programmability, while maintaining low cost
and power consumption as well as meeting high speed. As
high-level synthesis is on the verge of being accepted in the
commercial market, new techniques are necessary to support
a processor style of design which is becoming as an
important part of today's embedded system. In turn, this style
is beginning to appear as an important part of tomorrow's
system-on-a-chip [10].
This paper presents steps which have been implemented
within an existing architectural synthesis system (AMICAL)
[11] in order to support the design and construction of a
reprogrammable controller. As shown in figure 1, the
designer works with a characteristic algorithm linked to a
class of applications the processor is expected to support and
a set of constraints for the synthesis process. The new
implementation then produces a reprogrammable
architecture containing two main parts: a section for the data-
calculation, and a section containing the sequencer, program
ROM and micro-instruction register (figure 6). The resulting
architecture will be optimized for performance for the given
input algorithm within the defined constraints. The
construction process can also be guided interactively,
analogous to synthesis for hardwired architectures [11].
Working together with a firmware development system
containing a retargetable code-generator and instruction-set
simulator [12], the designer can quickly evaluate the trade-
offs between hardware decisions.

The remainder of this paper is organized as follows: In
section 2, we describe the new AMICAL design flow for
reprogrammable microcoded controllers. Section 3 describes
the current working architecture template and the synthesis
methodologies employed. In section 4, a design example is
presented. Section 5 presents some experimental results.
Section 6 provides a summary and an outlook for future
work.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 584

 2

Figure 1 : AMICAL Windows.

2 NEW GENERAL DESIGN FLOW

BEHAVIORAL
DESCRIPTION

ARCHITECTURE
GENERATION

SCHEDULING

ALLOCATION
 - Functional unit allocation
 - Micro-scheduling
 - Datapath synthesis

LOGIC SYNTHESIS AND
LAYOUT ENVIRONMENTS

A
M
I
C
A
L

Functional Unit
Library

(Synthesis view)

Procedures
and Functions

Figure 2 : AMICAL design-flow

AMICAL is an interactive high-level synthesis system

targetted towards control-flow dominated circuits [11][16]. It
starts with two kinds of information: a behavioral
specification given in VHDL and an external library of
functional units. This corresponds to the second step of the
methodology introduced above. The first step, system-level
analysis and partitioning is performed manually. The
AMICAL design-flow is illustrated by figure 2. The

behavioral description may make use of complex sub-
systems through call to procedures and functions. However
for each procedure or function used, the library must include
at least one functional unit able to execute the corresponding
operation. During the different steps of the high-level
synthesis, the functional units are used as black boxes. The
only pieces of information required about each functional
unit are included in the synthesis view. However to complete
the description at the register transfer level, the details of the
functional units (implementation view) are required.

The different steps involved in the synthesis process are :
scheduling, allocation and architecture generation (figure 2).
During the first step, the scheduler reads in the VHDL
description and produces a finite state machine presented as
a transition table. Each transition corresponds to the
execution of a control step under a given condition. All the
operations of a given transition may be executed in parallel.
An operation may correspond to a standard operation of
VHDL (e.g. +, -, ...) or to a procedure call. After scheduling,
architectural synthesis starts with two kinds of information,
namely the scheduled description and an external functional
unit library. The functional unit allocation step associates a
functional unit with each operation in the state table. The
micro-scheduling is then generated according to the
execution

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 5 85

 3

scheme for each operation. Each operation is
decomposed into a set of transfers, which are scheduled into
micro-cycles. Each micro-cycle contains a set of parallel
transfers that take one basic clock cycle to execute. The
datapath synthesis includes the component (functional unit
and register) placement and the connection allocation (buses
and switches). The response time of AMICAL is very short
and the combination of automatic and manual synthesis
allows a quick and broad exploration of the design space in
real time. Furthermore, AMICAL provides many facilities
for analyzing the generated architecture (statistics,
evaluation,...).

AMICAL produce a system composed of a complex
datapath and a controller (figure 3). The datapath may
include complex functional units. These are described as a
co-processor, executing complex procedures and functions.
This model allows for design re-use and a recursive design
methodology, i.e. a design produced may be as a component
in a more complex design.

Top
Controller

Communication Network

Functional
Unit

Functional
Unit

Functional
Unit.....

Top
Controller

Figure 3. Target architecture

In order to allow late changes when designing the chip

architecture, the controller needs to be programmable. In the
present version of AMICAL (figure 1) [11], a non-
programmable system-level controller can be described as a
flat FSM. The goal of this work is to develop an extension of
AMICAL, which will allow the generation of a
reprogrammable controller.

Figure 4 shows the new design flow for the generation of
the two styles of architectures: hardwired and
reprogrammable micro-coded controllers. For programmable
architectures, a set of modifications on the initial AMICAL
tool were necessary keeping the high-level design
methodologies. Figure 4 shows the new design flow, where
solid lines represent the initial flow and dashed lines indicate
the modifications introduced.

The main scheduling algorithm in AMICAL is called
Dynamic Loop Scheduling (DLS) [13]. This algorithm has
been adopted mainly in order to suit control flow dominated
designs. The scheduler produces a behavioral FSM where in
all conditions are executed in the control part of the resulting
architecture. The result is a hardwired FSM controller. Two
major modifications had to be done in order to generate a
reprogrammable architecture:
- Definition of a new architecture template as explained

in section 4.
- Transformation of the scheduling result: All condition

evaluations have to be executed in the datapath.

Therefore, a resource constrained transformation engine
has been adopted to extract conditions from a set of
mutually exclusive data flow graphs and to produce their
corresponding FSM.

Behavioral
Description (VHDL)

 FUs
Library

SCHEDULING
TRANSFORMATIONS

AMICAL

CONTROLLER DataPath

Hardwired PROGRAMMABLE
(FSM)

Figure 4: An Extended AMICAL Design-Flow

The generated controller is in a microcode form (figure

5). A first application is used to generate a prototype of a
reprogrammable processor architecture. For a new
application, the prototype architecture will be re-used: we
have just to generate the new microcode, which will be
loaded in the ROM of the programmable processor:
AMICAL will take into account the overall constraints
(resource and time) to generate an other microcode without
altering the method of generating of a datapath.

3. ARCHITECTURE TEMPLATE

The target ROM-based architecture is shown in figure 5.
It is composed of a top controller and a datapath. The
controller is composed of a ROM to store micro-instructions
and a sequencer to compute the next micro-instruction
address depending on the conditions returned by the
datapath. The sequencer is fixed in advance. The controller
architecture can be adapted to any set of control flow
instructions. The branching that can be executed can be a 2-
way or an m-way conditional one. This is beyond the
commonly-found micro-sequencer capabilities.

No modifications are needed in the datapath synthesis
process. The architecture consists of a set of functional units
communicating through a network. The FUs may run in
parallel. The FUs produce a set of flags known as the Code
Condition Register (CCR) which can be used for modeling
an unconditional as well as a conditional branch. The Micro-
Instruction Register (MIR) is composed of three parts:

- An action section, which corresponds to the set of
commands required to activate the appropriate
resources in the datapath.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 586

 4

- A Next Addr. (Next Address) section, which
represents the next micro-instruction address.

- A Mode section, modeling the branch type (Mode =
0 represents an unconditional branch and Mode = 1
represents a conditional branch).

AND

R OM

 Logic Block

CC R

MIR A DD E R

DATA-PATH

CONTROLLER

Next Addr. Mode Actions

A
D
D
R

SEQUENCER

CC

Figure 5: Architecture Template

4. 1. Sequencer Model

The sequencer contains an adder and a logic block to
compute the displacement in the ROM depending upon the
content of the CCR and the Mode type. The two modes are:
1- Conditional branch (figure 6(a)): in this case Mode = 1,

the logic block, depending on the CCR, determines the
displacement which corresponds to the selected branch.
The Next Address in the ROM is computed by adding the
address presented in the MIR and the displacement.

2- Unconditional branch (figure 7(b)): in this case Mode = 0
and the sequencer delivers the address present in the
MIR.

Sj

Mode = 1
Mode = 0

CCR=00

01
10

S0

S1 S2

Conditional branch(a) Unconditional branch(b)

Si
Si

Figure 6: Conditional and Unconditional Branche

4. 2. Synchronization Scheme

The programmable architecture follows a three stage
pipelined model as shown in figure 7. Each instruction takes
3 cycles to be executed:

- Cycle 1: Fetch : next ROM address computation.
- Cycle 2: Instruction decoding.
- Cycle 3: Instruction execution.

Once the micro-instruction is decoded and stored in the

MIR, two cases are possible:
1. An unconditional branch execution (Mode = 0): the

sequencer and the datapath continue to work
simultaneously.

2. A conditional branch execution (Mode = 1): the sequencer
has to wait for the datapath to update the flag register

CCR to be able to compute the displacement. The
sequencer waits for the computed flag.
We will see in the next section, how the scheduler ensures

that the three parts work together to execute the micro-
instructions.

ROM

S EQ. C SC S CS

CD C D C D

R RR

Mode=1

Mode=0

OP OP OP

CCCC CC

ADDRADDR ADDR ADDR

MIR MIR
MIR

Cycle i-2 Cycle i-1 Cycle i

ADDR: Current ROM Address, CD: Commands,
CS: Control: Sequencer, CC: Condition Code,
OP: Operations, R: Register value

Figure 7: Synchronization Scheme

4. DESIGN EXAMPLE
This section contains an example: the synthesis of the

Greatest Common Divider (GCD) of two integers. In
particular, we will show the different transformations of the
resulting FSM in order to capture the programmable
architecture style. This includes the execution of the
conditions in the datapath and the synchronization between
the different parts of the architecture. Figure 8 shows the
VHDL description of the GCD example.

entity gcd is
port (start: in bit;
 xi, yi: in integer;
 ou: out integer);
end gcd;
architecture behavior of gcd is
begin process variable x, y: integer;
 begin
 wait until (start = '1');
 x:= xi; y:= yi; (1)
 while (x /= y) loop
 if (x < y) then y := y-x; (2)
 else x := x-y; (3)
 end if;
 end loop;
 ou <= x; (4)
 end process;
end behavior;

__

Figure 8: Description of the GCD example

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 5 87

 5

 x:=x-y

 y:= x-y

CCR1

S1.1

S1.2

S1.3

S1.4

S2.1

S2.2

S2.5

S2.6

S2.3

S2.4

CCR0 := (start=1)
CCR1 := (start=0)

CCR1

CCR0

x:=xi; // y:= yi

CCR0 := (x<y)
CCR1 := (x>y)
CCR2 := (x=y)

CCR0

CCR2

(b)
ou <= x

Compute address
Compute conditions
Instruction decoding

Instruction execution

S1

S2 (a)

start=0

x=y
(4)

start=1
 (1)

x>y
 (3)

x<y
 (2)

Figure 9. (a) Scheduled FSM of the GCD example,
(b) Transformed FSM

The first step is performed by the DLS [13] algorithm

and result in a Mealy FSM as shown in figure 9(a). Each
transition consists of a set of actions to be executed and a set
of conditions to be evaluated. Since, the conditions have to
be calculated in the datapath, another scheduling step is
needed. Each condition is represented by a data
flow graph. All the data flow graphs corresponding to a
multiple branch (the associated transitions are issued from
the same state) are scheduled independently and merged onto
the same FSM. In the GCD example, the conditions are
simple and can be scheduled in the same state as shown in
figure 9(b). More complex conditions can be handled The
result of each condition is stored in the appropriate flag of
the CCR. The third step is to synchronize the three parts
(ROM, Datapath, sequencer) in a pipelined fashion. The
sequencer stalls to wait for the computed flags. This
necessitates the insertion of idle cycles (states S1.3, S2.3).

Depending on the presence of actions to be executed, the
datapath may (states S1.4, S2.4, S2.5, S2.6) or may not (state
S1.4) have to wait for the instruction decoding.

5. EXPERIMENTAL RESULTS

The GCD example has been extended to a three input
operation (GCD3) and synthesized at the behavioral level by
AMICAL in the same manner as the design example in
section 5. "Bubble" represents the synthesis of an example to
bubble sort for integers between 0 and 255. "Answer" is the
controller section of an automatic answering machine. "M.
Estimator" (Motion Estimator) is a part of a videophone
CODEC chip [26]. The CODEC chip codes and decodes
sequences of pictures through a pipeline of 12 operators.
Table 1 shows the results obtained for the two architecture

AMS Technology) : the hardwired and the
programmable. It can be observed that, compared to the
hardwired solution, the datapath corresponding to the ROM-
based architecture has an average increase area factor of 168
% on the examples listed in table 1. This is due to the
migration of the condition evaluation from the controller
towards the datapath (Fig. 12 and 13). Also, an average
increase factor of the clock period required for the
programmable architecture is 161 %. In the hardwired
architecture of the "GCD" and "GCD3" examples, the
slowest operation is the subtraction operation, which
determines the clock period. However, in the ROM based
architecture, the slowest operation is the read operation of
the ROM being used (Fig. 12 and 13). This is not likely to be
the limiting factor in larger examples; therefore, the impact
on the required clock cycle is expected to be smaller [5]. The
two solutions (Hirdwired and Programable (ROM)) was
simulated with the same tool (SYNOPSYS) with GCD3
example. We say (Fig. 10 and 11) that both solutions give
the same behaviour.

Figure 10. Hirdwired Controller Simulation (GCD3)

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 588

 6

Figure 11. Programmable (ROM) Controller Simulation (GCD3)

Figure 12. Programable Controller Data-Path (GCD3)

Figure 13. Hirdwired Controller Data-Path (GCD3)

Examples # VHDL ines # Transistions Area (# Transistors) Cycle Time (ns)

 Hard. Prog. % Hard. Prog. % Hard Prog. %

GCD 36 12 13 +9% 11243 30356 +170% 15 35 +133%

GCD3 38 12 18 +50% 12675 30644 +166% 25 70 +180%

BUBBLE 85 38 55 +42% 21332 40299 +88% 28 75 +167%

ANSWER 280 74 137 +85% 36857 62619 +68% 21 56 +166%

M.ESTIMATOR 441 182 408 +124% 76635 344857 +350% 23 60 +160%

AVERAGE +168 % +161%

Hard: Hardwired, Prog: Programmable, %:Overhead.
Table 1: Area and Time Estimation

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 5 89

 7

6. CONCLUSION AND FUTURE WORK
This paper presented a method implemented in an existing

architectural synthesis system to extend it for the generation of
reprogrammable controllers. This system was initially
intended to generate hardwired architectures. Automatic
generation of processors provides several benefits of the
behavioral architectural synthesis including:

- Library-based functional units allocation for the

datapath.
- Optimization to meet Timing Constraints.
- Automatic and Interactive Scheduling.
- Rapid prototyping.

The main contribution of this work has been the proposal
and implementation of an architecture template style which
enables to obtain a reprogrammable controller from an
architectural synthesis system.

The directions for future work consists of developing new
styles for the controller and the sequencer. We also aim an
additional support for the resource and time constraint's based
scheduling and allocation to reprogramming the controller for
new behaviors.

ACKNOWLEDGMENTS

We gratefully acknowledge the help of the following
researchers at TIMA/CNRS-INPG (Grenoble, France): Polen
Kission, Hong Ding, P.Vijay Raghavan, Clifford Liem, Carlos
Alberto Valderama, Mohamed Romdhani.

REFERENCES

[1] M. Benmohammed, A. Rahmoune and P. Kission,

"Generating Reprogrammable Microcoded Controllers
within a High-Level Synthesis Environment", AJSE,
Arabian journal for Science and Engineering, Saudi
Arabia, vol. 24 no 1B, pp. 57-67, April 2000.

[2] P. Paulin, et. Al., "Trends in Embedded Systems
Technology: An Industrial Perspective", NATO Advanced
Study Institute on Hardware/Software Co-Design,
Tremezzo, Italy, June 1995.

[3] C. Liem, P. Paulin, M. Cornero and A. A. Jerraya,
"Industrial Experiments Using Rule-driven Retargetable
Code Generation for Multimedia Application", Proc. of the
Int. Sym. Sys. Synthesis, September 1995, pp. 60-65.

[4] M. McFarland, A. Parker and R. Composano, "The High-
Level Synthesis of Digital Systems", Proc. of the IEEE,
Vol. 78, No. 2, February 1990, pp. 301-318.

[5] D. Gajski, W. Wolf, High Level Synthesis, Kluwer
Academic Publisher, 1992.

[6] R. Composano, R. A. Bergamashi, "Synthesis Using Path-
Based Scheduling: Algorithms and Exercices", 27th DAC,
pp 450-455, Orlando, June 1999.

[7] D. C. Ku, DeMicheli, "Relative Scheduling under timing
constraints", IEEE Trans. on CAD/ICAS, May 2000.

[8] J. Rabaey, et. al., CATHEDRAL-II: a synthesis system for
multiprocessor DSP systems, in D. Gajski Ed., Silicon
Compilation, Adison-Wesley, pp. 311-360, 1993.

[9] D. Knapp, T. Ly, D. MacMillen, R. Miller, "Behavioral
Synthesis Methodology for HDL-Based Specification and
Validation", Proc. of the 32nd ACM/IEEE DAC, June,
1994 pp. 286-291.

[10] P. Paulin, J. Frehel, E. Berrebi, C. Liem, J. C. Herluison
and M. Harrand, "High-Level Synthesis and Codesign
Methods: An Application to Videophone Codec", Invited
paper EuroDAC/VHDL, Brighton, September 1995.

[11] P. Kission, H. Ding, A. A. Jerraya, "Structured Design
Methodology for High-Level Design", Proc. of the 31st
ACM/IEEE DAC, June 1994.

[12] P. Paulin, C. Liem, T. May, S. Suturwala, "FlexWare: an
Flexible Firmware Development Environment for
Embedded System", in Code Generation for Embedded
Processors, Ed. P. Marweded, G. Goosens, Kluwer
Academic Publisher, 1995.

[13] M. Rahmouni, K. 0'Brien and A.A. Jerraya, "A loop-
based Scheduling Algorithm For Hardware Description
Languages", Parallel Processing Letters, Vol. 4 No 3,
pp. 351-364, 1994.

[14] A. Kifli, et. Al., "Flag/Condition Handling an Branch
Assignment for Large Microcoded Controllers", G.
Saucier, editor, Control Dominated Synthesis From a
RT Description, Elsevier Science Publisher, 1999.

[15] J. Zegers, P. Six, J. Rabaey, H. De Man, "CGE:
Automatic Generation of Controllers in the
CATHEDRAL-II Silicon Compiler", Proc. European
Design Automation Conference, pp. 617-621, 2000.

[16] M. Benmohammed and A. Rahmoune, "Automatic
Generation of Reprogrammable Microcoded Controllers
within a High-Level Synthesis Environment",
IEE Journal : Computers and Digital Techniques,
UK, Vol. 145, no : 3, Mai 1998, pp. 155-160.

[17] F. Poirot and G. Saucier, "Controller Synthesis in the
ASYL System", In North Holland, editor, International
Workshop on Logic and Architecture Synthesis for
Silicon Compilers, 1999.

[18] A. Kiffli, G. Goosen and H. D. Man, "A Unified
Scheduling Model for High-Level Synthesis and code
Generation", ED & TC, pp. 234-238, Paris, March 1995.

[18] M. Benmohammed and K. Polen, "The Application of
HLS Techniques for the Generation of Pipelined
Microcontrollers", Proceeding of the 7th IEEE
International Conference on Electronic, Circuits and
Systems, ICECS2K, Dec. 17-20, 2000, Beyrouth, Liban,
pp. 992-997.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 1 - NUMBER 590

