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ABSTRACT 
 

 
Existing techniques in high-level synthesis mostly assume 

a simple controller architecture model in the form of a single 
FSM. However, in reality more complex controller 
architectures are often used. On the other hand, in the case of 
programmable processors, the controller architecture is 
largely defined by the available control-flow instructions in 
the instruction set. 

With the wider acceptance of behavioral synthesis, the 
application of these methods for the design of programmable 
controllers is of fundamental importance in embedded system 
technology. This paper describes an important extension of 
an existing architectural synthesis system targeting the 
generation of ASIP reprogrammable architectures. The 
designer can then generate both style of architecture, 
hardwired and programmable, using the same synthesis 
system and can quickly evaluate the trade-offs of hardware 
decisions. 

 
Keys-Words: CAD-VLSI, Architectural Synthesis, High-
Level Synthesis, Controller, DSP, ASIC, ASIP, FSM, 
VHDL. 

 
 

1. INTRODUCTION 
The advantage of ASIC solutions is their cost efficiency. 

However, for competitive markets like consumer electronics 
or telecommunications, ASICs  often lack flexibility and 
programmability.  

In the past, commercial DSP processors were the only 
choice when programmability was desired. More recently, a 
trend emerged in the DSP community to build an 
Application-Specific Instruction-set Processors (ASIP), 

which offers programmability, while maintaining low cost 
and power consumption as well as meeting high speed. As 
high-level synthesis is on the verge of being accepted in the 
commercial market, new techniques are necessary to support 
a processor style of design which is becoming as an 
important part of today's embedded system. In turn, this style 
is beginning to appear as an important part of tomorrow's 
system-on-a-chip [10]. 
This paper presents steps which have been implemented 
within an existing architectural synthesis system (AMICAL) 
[11] in order to support the design and construction of a 
reprogrammable controller. As shown in figure 1, the 
designer works with a characteristic algorithm linked to a 
class of applications the processor is expected to support and 
a set of constraints for the synthesis process. The new 
implementation then produces a reprogrammable 
architecture containing two main parts: a section for the data-
calculation, and a section containing the sequencer, program 
ROM and micro-instruction register  (figure 6). The resulting 
architecture will be optimized for performance for the given 
input algorithm within the defined constraints. The 
construction process can also be guided interactively, 
analogous to synthesis for hardwired architectures [11]. 
Working together with a firmware development system 
containing a retargetable code-generator and instruction-set 
simulator [12], the designer can quickly evaluate the trade-
offs between hardware decisions.  

The remainder of this paper is organized as follows: In 
section 2, we describe the new AMICAL design flow for 
reprogrammable microcoded controllers. Section 3 describes 
the current working architecture template and the synthesis 
methodologies employed. In section 4, a design example is 
presented. Section 5 presents some experimental results. 
Section 6 provides a summary and an outlook for future 
work.
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Figure 1 : AMICAL Windows. 
 

2 NEW GENERAL DESIGN FLOW 
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Figure 2 : AMICAL design-flow 
 
AMICAL is an interactive high-level synthesis system 

targetted towards control-flow dominated circuits [11][16]. It 
starts with two kinds of information: a behavioral 
specification given in VHDL and an external library of 
functional  units. This corresponds to the second step of the 
methodology introduced above. The first step, system-level 
analysis and partitioning is performed manually. The 
AMICAL design-flow is illustrated by figure 2. The 

behavioral description may make use of complex sub-
systems through call to procedures and functions. However 
for each procedure or function used, the library must include 
at least one functional unit able to execute the corresponding 
operation. During the different steps of the high-level 
synthesis, the functional units are used as black boxes. The 
only pieces of information required about each functional 
unit are included in the synthesis view. However to complete 
the description at the register transfer level, the details of the 
functional units (implementation view) are required.  

The  different steps involved in the synthesis process are : 
scheduling, allocation and architecture generation (figure 2). 
During the first step, the scheduler reads in the VHDL 
description and produces a finite state machine presented as 
a transition table. Each transition corresponds to the 
execution of a control step under a given condition. All the 
operations of a given transition may be executed in parallel. 
An operation may correspond to a standard operation of 
VHDL (e.g. +, -, ...) or to a procedure call. After scheduling, 
architectural synthesis starts with two kinds of information, 
namely the scheduled description and an external functional 
unit library. The functional unit allocation step associates a 
functional unit with each operation in the state table. The 
micro-scheduling is then generated according to the 
execution 
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scheme for each operation. Each operation is 
decomposed into a set of transfers, which are scheduled into 
micro-cycles. Each micro-cycle contains a set of parallel 
transfers that take one basic clock cycle to execute. The 
datapath synthesis includes the component (functional unit 
and register) placement and the connection allocation (buses 
and switches). The response time of AMICAL is very short 
and the combination of automatic and manual synthesis 
allows a quick and broad exploration of the design space in 
real time. Furthermore, AMICAL provides many facilities 
for analyzing the generated architecture (statistics, 
evaluation,...). 

AMICAL produce a system composed of a complex 
datapath and a controller (figure 3). The datapath may 
include complex functional units. These are described as a 
co-processor, executing complex procedures and functions. 
This model allows for design re-use and a recursive design 
methodology, i.e. a design produced may be as a component 
in a more complex design. 

 

Top 
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Functional 
Unit

Functional 
Unit

Functional 
Unit.....

Top 
Controller

 

Figure 3. Target architecture 
 
In order to allow late changes when designing the chip 

architecture, the controller needs to be programmable. In the 
present version of AMICAL (figure 1) [11], a non-
programmable system-level controller can be described as a 
flat FSM. The goal of this work is to develop an extension of 
AMICAL, which will allow the generation of a 
reprogrammable controller. 

Figure 4 shows the new design flow for the generation of 
the two styles of architectures: hardwired and 
reprogrammable micro-coded controllers. For programmable 
architectures, a set of modifications on the initial AMICAL 
tool were necessary keeping the high-level design 
methodologies. Figure 4 shows the new design flow, where 
solid lines represent the initial flow and dashed lines indicate 
the modifications introduced. 

The main scheduling algorithm in AMICAL is called 
Dynamic Loop Scheduling (DLS) [13]. This algorithm has 
been adopted mainly in order to suit control flow dominated 
designs. The scheduler produces a behavioral FSM where in 
all conditions are executed in the control part of the resulting 
architecture. The result is a hardwired FSM controller. Two 
major modifications had to be done in order to generate a 
reprogrammable architecture: 
- Definition of  a new  architecture template as explained 

in section 4. 
- Transformation of the scheduling result: All  condition 

evaluations have to be executed in the datapath. 

Therefore, a resource constrained transformation engine 
has been adopted to extract conditions from a set of 
mutually exclusive data flow graphs and to produce their 
corresponding FSM. 
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Figure 4: An Extended AMICAL Design-Flow 

 
The generated controller is in a microcode form (figure 

5). A first application is used to generate a prototype of a 
reprogrammable processor architecture. For a new 
application, the prototype architecture will be re-used: we 
have just to generate the new microcode, which will be 
loaded in the ROM of the programmable processor: 
AMICAL will take into account the overall constraints  
(resource and time) to generate an other microcode without 
altering the method of generating of a datapath. 

 
3. ARCHITECTURE TEMPLATE 

The target ROM-based architecture is shown in figure 5. 
It is composed of a top controller and a datapath. The 
controller is composed of a ROM to store micro-instructions 
and a sequencer to compute the next micro-instruction 
address depending on the conditions returned by the 
datapath. The sequencer is fixed in advance. The controller 
architecture can be adapted to any set of control flow 
instructions. The branching that can be executed can be a 2-
way  or an m-way  conditional one. This is beyond the 
commonly-found micro-sequencer capabilities. 

No modifications are needed in the datapath synthesis 
process. The architecture consists of a set of functional units 
communicating through a network. The FUs may run in 
parallel. The FUs produce a set of flags known as the Code 
Condition Register (CCR) which can be used for modeling 
an unconditional as well as a conditional branch. The Micro-
Instruction Register  (MIR) is composed of three parts: 

- An action section, which corresponds to the set of 
commands required to activate the appropriate  
resources in the datapath. 
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- A Next Addr. (Next Address) section, which 
represents the next micro-instruction address. 

- A Mode section, modeling the branch type (Mode = 
0 represents an unconditional branch and Mode = 1 
represents a conditional branch). 
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Figure 5: Architecture Template 

 
4. 1. Sequencer Model 

The sequencer contains an adder and a logic block to 
compute the displacement in the ROM depending upon the 
content of the CCR  and the Mode type. The two modes are: 
1- Conditional branch (figure 6(a)): in this case Mode = 1, 

the logic block, depending on the CCR, determines the 
displacement which corresponds to the selected branch. 
The Next Address in the ROM is computed by adding the 
address presented in the MIR and the displacement.  

2- Unconditional  branch (figure 7(b)): in this case Mode = 0 
and the sequencer delivers the address present in the 
MIR. 
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Figure 6: Conditional and Unconditional Branche 
 
4. 2. Synchronization Scheme 

The programmable architecture follows a three stage 
pipelined model  as shown in figure 7. Each instruction takes 
3 cycles to be executed: 

 
- Cycle 1: Fetch : next ROM address computation. 
- Cycle 2: Instruction decoding. 
- Cycle 3: Instruction execution. 

 
Once the micro-instruction is decoded and stored in the 

MIR, two cases are possible: 
1. An unconditional branch execution (Mode = 0): the 

sequencer and the datapath continue to work 
simultaneously. 

2. A conditional branch execution (Mode = 1): the sequencer 
has to wait for the datapath to update the flag register 

CCR to be able to compute the displacement. The 
sequencer waits for the computed flag. 
We will see in the next section, how the scheduler ensures 

that the three parts work together to execute the micro-
instructions. 
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ADDR: Current ROM Address, CD: Commands, 
CS: Control: Sequencer,   CC: Condition Code, 
OP: Operations,    R: Register value 

Figure 7: Synchronization Scheme 
 
 

4. DESIGN EXAMPLE 
This section contains an example: the synthesis of the 

Greatest Common Divider (GCD) of two integers. In 
particular, we will show the different transformations of the 
resulting FSM in order to capture the programmable 
architecture style. This includes the execution of the 
conditions in the datapath and the synchronization between 
the different parts of the architecture. Figure 8 shows the 
VHDL description of  the GCD example. 
_______________________________________________ 

entity gcd is 
port (start: in bit; 
       xi, yi: in integer; 
       ou: out integer); 
end gcd; 
architecture behavior of gcd is 
begin  process  variable x, y: integer; 
        begin 
            wait until (start = '1'); 
            x:= xi; y:= yi;    (1) 
            while (x /= y ) loop 
            if (x < y )  then y := y-x; (2) 
                           else  x := x-y;  (3) 
            end if; 
            end loop; 
            ou <= x;   (4) 
        end process; 
end behavior; 

______________________________________________ 

Figure 8: Description of the GCD example 
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Figure 9. (a) Scheduled FSM of the GCD example, 
(b) Transformed FSM 

 
The first step is performed by the DLS [13] algorithm 

and result in a Mealy  FSM as shown in figure 9(a). Each 
transition consists of a set of actions to be executed and a set 
of conditions to be evaluated. Since, the conditions have to 
be calculated in the datapath, another scheduling step is 
needed. Each condition   is    represented         by      a   data       
flow graph. All the data flow graphs corresponding to a 
multiple branch (the associated transitions are issued from 
the same state) are scheduled independently and merged onto 
the same FSM. In the GCD example, the conditions are 
simple and can be scheduled in the same state as shown in 
figure 9(b). More complex conditions can be handled The 
result of each condition is stored in the appropriate flag of 
the CCR. The third step is to synchronize the three parts 
(ROM, Datapath, sequencer) in a  pipelined fashion. The 
sequencer stalls to wait for the computed flags. This 
necessitates the insertion of idle   cycles (states S1.3, S2.3).  

Depending on the presence of actions to be executed, the 
datapath may (states S1.4, S2.4, S2.5, S2.6) or may not (state 
S1.4) have to wait for the instruction decoding. 

 
5. EXPERIMENTAL RESULTS 

The GCD example has been extended to a three input 
operation (GCD3) and synthesized at the behavioral level by 
AMICAL in the same manner as the design example in 
section 5. "Bubble" represents the synthesis of an example to 
bubble sort for integers between 0 and 255. "Answer" is the 
controller section of an automatic answering machine. "M. 
Estimator" (Motion Estimator) is a part of a videophone 
CODEC chip [26]. The CODEC chip codes and decodes 
sequences of pictures through a pipeline of 12 operators. 
Table 1 shows the results obtained for the two architecture 

AMS Technology) : the hardwired and the 
programmable. It can be observed that, compared to the 
hardwired solution, the datapath corresponding to the ROM-
based architecture has an average increase area factor of 168 
% on the examples listed in table 1. This is due to the 
migration of the condition evaluation from the controller 
towards the datapath (Fig. 12 and 13). Also, an average 
increase factor of the clock period required for the 
programmable architecture is 161 %. In the hardwired   
architecture of the  "GCD" and  "GCD3" examples, the 
slowest operation is the subtraction operation, which 
determines the clock period. However, in the ROM based 
architecture, the slowest operation is the read operation of 
the ROM being used (Fig. 12 and 13). This is not likely to be 
the limiting factor in larger examples; therefore, the impact 
on the required clock cycle is expected to be smaller [5]. The 
two solutions (Hirdwired and Programable (ROM)) was 
simulated with the same tool (SYNOPSYS) with GCD3 
example. We say (Fig. 10 and 11) that both solutions give 
the same behaviour. 

 
 
 
 
 
 
 
 
 

 

 
Figure 10.  Hirdwired Controller Simulation (GCD3) 
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Figure 11. Programmable (ROM) Controller Simulation (GCD3) 

 
 

 
Figure 12. Programable Controller Data-Path (GCD3) 

 

 
Figure 13. Hirdwired Controller Data-Path (GCD3) 

 
 

Examples # VHDL   ines # Transistions Area (# Transistors) Cycle Time (ns) 

  Hard. Prog. % Hard. Prog. % Hard Prog. % 

GCD 36 12 13 +9% 11243 30356 +170% 15 35 +133% 

GCD3 38 12 18 +50% 12675 30644 +166% 25 70 +180% 

BUBBLE 85 38 55 +42% 21332 40299 +88% 28 75 +167% 

ANSWER 280 74 137 +85% 36857 62619 +68% 21 56 +166% 

M.ESTIMATOR 441 182 408 +124% 76635 344857 +350% 23 60 +160% 

AVERAGE     +168 %   +161% 

Hard: Hardwired, Prog: Programmable, %:Overhead. 
Table 1: Area and Time Estimation 
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6. CONCLUSION AND FUTURE WORK 
This paper presented a method implemented in an existing 

architectural synthesis system to extend it for the generation of 
reprogrammable controllers. This system was initially 
intended to generate hardwired architectures. Automatic 
generation of processors provides several benefits of the 
behavioral architectural synthesis including: 

 
-  Library-based functional units allocation for the 

datapath. 
- Optimization to meet Timing  Constraints. 
-  Automatic and Interactive Scheduling. 
- Rapid prototyping.  
 

The main contribution  of this work has been the proposal 
and implementation of an architecture template style which 
enables to obtain a reprogrammable controller from an 
architectural synthesis system. 

The directions for future work consists of developing new 
styles for the controller and the sequencer. We also aim an 
additional support for the resource and time constraint's based 
scheduling and allocation to reprogramming the controller for 
new behaviors. 
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