

Iterative Filtering of Retrieved Information to Increase
Relevance
Robert Zeidman

President, Zeidman Consulting
15565 Swiss Creek Lane
Cupertino, CA 95014 USA

+1.408.741.5809

Bob@ZeidmanConsulting.com

ABSTRACT
Efforts have been underway for years to find more effective
ways to retrieve information from large knowledge domains.
This effort is now being driven particularly by the Internet and
the vast amount of information that is available to
unsophisticated users. In the early days of the Internet, some
effort involved allowing users to enter Boolean equations of
search terms into search engines, for example, rather than just a
list of keywords. More recently, effort has focused on
understanding a user’s desires from past search histories in order
to narrow searches. Also there has been much effort to improve
the ranking of results based on some measure of relevancy. This
paper discusses using iterative filtering of retrieved information
to focus in on useful information. This work was done for
finding source code correlation and the author extends his
findings to Internet searching and e-commerce. The paper
presents specific information about a particular filtering
application and then generalizes it to other forms of information
retrieval.

Keywords
Correlation, E-Commerce, Filtering, Information Retrieval,
Intellectual Property, Internet, Search Engine, Source Code,
World Wide Web.

1. INTRODUCTION
Years ago I heard a story about the Department of Defense
contracting a software company, in a time of war, to create a
program to automatically translate from the enemy’s language to
English. The software went through rigorous testing and
numerous revisions, but because of idioms and slang and the
usual ambiguities of human languages, the program could only
correctly interpret about 80% of what was input. The DOD
eventually gave up on the project because it couldn’t afford to
misinterpret 20% of all enemy correspondences and so it
continued to translate documents manually. That is until one
clever person realized that a human reviewing automatically
translated documents for errors was able to correct those errors
in a fraction of the time it would take to translate entire
documents manually. Just because the program was not 100%
effective did not mean it was not effective at all.

The lesson here is that human interaction should not be
discounted. Sources of electronic information are becoming
more widely available, and non-technical users are required to
access that information. Sophisticated algorithms for
automatically figuring out a user’s requirements and retrieving

information are being developed and improved, but it is doubtful
that these algorithms will ever be 100% effective. Filtering the
information, as defined in this paper, refers to the process of
refining retrieved information to eliminate less relevant results.
Allowing a user to iteratively filter the information until the
results are manageable is an important process. This paper
defines the process and offers examples of current work and
areas for future research.

2. CODEMATCH
I have been working for the past decade as an expert witness in
intellectual property cases and have been asked on many
occasions to examine software source code from a plaintiff and a
defendant to determine whether one has plagiarized (stolen)
code from the other. I found that the few existing tools for
“plagiarism detection”1 were too inaccurate for a situation
where hundreds of millions of dollars could be at stake. So I
developed my own tool called Code TMMatch .

After using CodeMatch on a number of cases, I found that it
shared a deficiency with the other tools. Once two sets of
software source code files were compared, and results were
presented to the user, those results could not be further refined.
Because a large comparison could take up to a week to deliver
results, it was impractical to rerun the comparison using new
settings. It was practical however to filter the results to obtain a
more manageable and more relevant set of results to examine.

The operation of CodeMatch is briefly described below as well
as the problems that arose and how those problems were solved
using filtering.

1 Prior to CodeMatch there were generally two categories of

tools, “plagiarism detection” and “clone detection,” that each
were looking for software similarities but with two different
purposes. CodeMatch is actually a more general “Source code
correlation tool” that can be used to find plagiarism or clones
or other kinds of similarities. See Zeidman [1] for more
information.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 91ISSN: 1690-4524

2.1 Source Code Correlation Algorithms
CodeMatch compares a set of source code files, set 1, to another
set of source code files, set 2, by first dividing the source code
into elements defined in the following table.

Software source
code elements

Description

Statements Cause actions to occur.
Sequence dependent.

 Instructions Signify the actions to
take place.

 Control words Control the program flow
(e.g. “if”, “case”,
“goto”, “loop”).

 Operators Manipulate data (e.g., +,
-. *. /).

Identifiers Reference code or data.
 Variables Identify data.
 Constants Identify constants.
 Functions Identify code.
 Labels Specify locations in the

program.
Comments For documentation. Cause

no actions to occur.
Table 1. Source code structure

The program then compares these elements separately for each
source code file and determines a correlation for each element
and a source code correlation ρ according to the formula below:

ρ = kiρi + ksρs + kcρc + kqρq (1)

where

• ρs = statement correlation

• ks = the weight given to the statement correlation

• ρc = comment correlation

• kc = the weight given to the comment correlation

• ρi = identifier correlation

• ki = the weight given to the identifier correlation

• ρq = instruction sequence correlation

• kq = the weight given to instruction sequence
correlation

CodeMatch uses five algorithms to determine the correlation for
each of these correlations. These algorithms are:

• Statement Matching: the number of identical
statements after certain basic transformations have
been made. Used to determine statement correlation.

• Comment Matching: the number of identical
comments after certain basic transformations have
been made. Used to determine comment correlation.

• Identifier Matching: the number of identical
identifiers. Used to determine identifier correlation.

• Partial Identifier Matching: the number of identical
identifiers. Used to determine identifier correlation.

• Instruction sequences: the longest sequence of
identical instructions. Used to determine instruction
sequence correlation.

2.2 Presentation of Results
For each file in set 1, the files in set 2 are listed along with their
correlation scores in order of highest to lowest score as shown in
Figure 1. By clicking on the correlation score for any pair of
files, a detailed report is brought up showing the different
algorithms that were run and which specific elements of each
file had correlation. For example, if the comment correlation is
nonzero, the detailed report would show all matching comments
in the two files.

D:\CodeSuite\Code Development\test\C\files 1\aaa.c

Score Compared To File

100 D:\CodeSuite\Code Development\test\C\files 2\aaa.c

12

D:\CodeSuite\Code Development\test\C\files
2\bpf_dump_strings.c

12

D:\CodeSuite\Code Development\test\C\files
2\semicolon_test.c

12 D:\CodeSuite\Code Development\test\C\files
2\test\bpf_image.c

Figure 1. CodeMatch report

2.3 Superfluous Results
In reviewing the results of the comparison, often some specific
files or specific source code elements would show up throughout
the results, skewing the results and hiding the important
correlation information. For example, open source files may
have been used in one or both sets of files. In searching for
plagiarized code, the open source files would be highly
correlated with each other, but these correlations were not
important.

Similarly, there are specific statements, comments, and
identifiers that can be found in files that increase the correlation
but are not relevant to finding plagiarized code though they may
be relevant to finding other kinds of correlation like code clones.
A user searching for plagiarized code may find that two
programs running on the Microsoft Windows operating system
both use the same system calls. Thus files with these system
calls will have a higher correlation but for reasons that are
unimportant to finding plagiarism.

Had these results been known up front, some of them could have
been eliminated before the correlation was calculated. However,
given the number of files and the number of source code
elements, it was impractical to find these elements before
performing the correlation. Also the correlation itself pointed
out many of these superfluous elements.

2.4 CodeMatch Post-Process Filtering
In order to make examination of the correlation results more
useful, and to allow the user to focus in on the kinds of
correlation that is most important, I added the ability to filter the
results. After CodeMatch produces a database of results, the
following filtering can be performed on the database.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 692 ISSN: 1690-4524

R1

• Statement filtering: A list of statements is created by
the user. Any correlation due to a statement on this list
is eliminated and the statement correlation score is
decremented appropriately and the overall correlation
score is decremented appropriately.

• Comment filtering: A list of comments is created by
the user. Any correlation due to a comment on this list
is eliminated and the comment correlation score is
decremented appropriately and the overall correlation
score is decremented appropriately.

• Identifier filtering: A list of identifiers is created by
the user. Any correlation due to an identifier on this
list is eliminated and the identifier correlation score is
decremented appropriately and the overall correlation
score is decremented appropriately.

• General file filtering: A list of file names is created by
the user. Any correlation between any file whose
name appears on the list and any other file is removed
from the results database.

• Specific file filtering: A list of file names with
absolute folder paths is created by the user. Any
correlation between a specific file on the list and any
other file is removed from the results database.

• Folder filtering: A list of folders is created by the user.
Any correlation between a file in a folder on the list
and any other file is removed from the results
database.

• Threshold filtering: The user can change threshold
parameters, reducing the number of correlated file
pairs that are displayed. The user can set minimum
and maximum correlation scores to display and can set
a maximum number of correlated files to display for
each file in set 1.

After the filtering is performed on the database, new correlation
scores are computed between file pairs. This affects the
displayed output because ranking can change after filtering. It
was found that for large file sets this filtering reduced the
manual process of reviewing the results in order to find
plagiarized source code files from days to hours or even
minutes.

3. POST-PROCESS FILTERING
My experience with CodeMatch can be generalized to any kind
of information retrieval process.

3.1 Information Retrieval Process
Information retrieval starts with an information domain. This
information domain can be a well-organized, categorized
domain such as a database or it can be a disorganized,
uncategorized domain such as the Internet. In all cases,
information retrieval has been classified into two types – “exact
match” and “best match.”

3.1.1 Exact match
The “exact match” type of information retrieval is represented
by the Boolean retrieval method used by database queries and
Internet search engines. In these cases, Boolean equations of
keywords are entered by a user and all objects in the information
domain (HTML pages in the case of the Web), that meet the
criteria are retrieved for the user. Even the more sophisticated

search engines that allow a user to input natural language
queries are typically parsing the language to retrieve the
keywords and Boolean equations.

3.1.2 Best match
The “best match” category of information retrieval uses vector
space and probabilistic retrieval methods that essentially try to
understand what information a user wants, sometimes based on
past searches or other stored user parameters, then present the
information to the user that is deemed closest to what the user
desires. An example of this would be the book suggestions that
Amazon.com presents to customers based on their search criteria
and their past searches. A more detailed description of retrieval
models and retrieval classification can be found in Salton &
McGill [17].

O2

On
O1

D

DU

R2 Rn

R1n

R12 R2n

Q

Figure 2. Information retrieval

3.1.3 Query-object relationships
A representation of information retrieval is shown in Figure 2
where D is the information domain, and Q is the user’s query.
DU is the subset of the domain that meets the user’s information
need based on the retrieval process. Each arrow from an object
to the query represents the relationship Ri between the query and
the object. For all retrieval methods, DU is the set of all objects
such that Ri > 0.

DU = {Oi : Ri > 0 for all i} (1)

Equation 1. User information domain

For a Boolean retrieval method, the Ri is a scalar 1 for all i. In
other words, a Boolean retrieval only retrieves objects that
exactly match the query.

Ri = 1 for all i (2)

Equation 2. Query-object relationship for Boolean retrieval

For a probabilistic retrieval method, Ri equals P(Q|Oi), which is
the probability that a user’s query is met by retrieved object Oi.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 93ISSN: 1690-4524

Ri = P(Q|Oi) for all i (3)

Equation 3. Query-object relationship for probabilistic
retrieval

For a vector space retrieval method, Ri equals ρ(Q,Oi), which is
the correlation between a user’s query and object Oi. The
correlation may be a dot product of vectors, representing the
distance between the vectors in a multidimensional space, or it
may be the cosine similarity measure, representing the angle
between the vectors (see Letsche & Berry [10] for further
details). Note that the correlation determined by CodeMatch is a
form of vector space retrieval (a future paper will expound on
that).

Ri = ρ(Q,Oi) for all i (4)

Equation 4. Query-object relationship for vector space
retrieval

In addition to relationships between a query and the retrieved
objects, note that there are relationships between various
retrieved objects, represented by the arrows Rik between objects
Oi and Ok. We make use of this fact for post-process filtering,
discussed later.

3.2 Information Display Process
Once the information objects are retrieved from the domain,
they must be displayed to the user. There are two types of
criteria that can be used for this display. “Internal criteria” are
criteria derived from the relationships determined during the
retrieval process. “External criteria” are criteria determined in a
new step unrelated to the retrieval process. Of course,
combinations of internal and external criteria can also be used.

3.2.1 Internal display ranking criteria
For best match retrieval methods, the objects can be displayed in
order according to their relationship to the query. Objects with
higher probabilities or higher correlation values are displayed
first. The relationships are used as the criteria for displaying the
objects. For exact match retrieval methods, internal criteria do
not provide a way to display the results because all retrieved
objects have a relationship of 1.

3.2.2 External display ranking criteria
External criteria are often used to display the results. Perhaps the
best known example of external display criteria is the PageRank
method used by Google (see Brin & Page [2]).

Pi = (1-d) + d(Σ(Pk/Lk) for 1 ≤ k ≤ n, k ≠ i (5)

Equation 5. Google PageRank algorithm

Pi is the PageRank value of page Oi. Lk is the number of external
links on page Ok that point to other pages. Pages O1 through On
are all of the pages that have links to page Oi. The parameter d is
a “damping factor” that Google claims to typically set to 0.85.
The PageRanks effectively form a probability distribution such
that the sum of all web page PageRanks will be 1.

The Google ranking method is only one particular method.
Other methods include the “Hub-Threshold Kleinberg”
algorithm (see Kleinberg [10]). I represent ranking methods
generally using the term Pi.

3.2.3 Display threshold
Regardless of which kind of ranking criteria is used, there is
often also a display threshold. Retrieved objects that have a

ranking below the display threshold are not shown to the user.
An object with a very low ranking is thought to be irrelevant and
its relationship with the query is thought to be random rather
than due to any relationship that would be significant to the user.

3.3 Post-retrieval Filtering
What I propose is another step after retrieval and display to
further refine the results and reduce the number of retrieved
objects to one that is reasonable to examine. There are several
ways this can be accomplished using combinations of “object
filters,” “new query filters,” “negative query filters,” “threshold
filters,” and “object relationship filters.”

3.3.1 Object filter
Object filtering is the process of allowing the user to eliminate
individual objects or whole sets of objects from the user
information domain DU. This can be done by allowing the user
to specify objects to remove or categories of objects to remove.
The removal process is dependent on the type of information
being retrieved. When the retrieved objects are files, the criteria
used to remove objects might be file name, location (path name),
size, modification date, or creation date. With regard to
CodeMatch, the general file filtering, specific file filtering, and
folder filtering are examples of object filtering.

3.3.2 New query filter
New query filtering refers to using a new query on the retrieved
user domain DU to create a new domain DU′ that is a subset of
DU. Some search engines provide this kind of filtering by
allowing the user to further search the retrieved results with a
new Boolean expression of keywords.

3.3.3 Negative query filter
Negative query filtering refers to applying a query to the
retrieved information in order to eliminate objects. For instance,
suppose the original query is a Boolean query to find all
documents with the phrases “software” “source code” and
“correlation.” A query-based elimination filter would one where
the user eliminates all objects within DU that contain the
keyword “correlation.” This would be equivalent to an original
query to find all documents with the phrases “software” and
“source code” but not “correlation.” However, there are two
reasons that negative query filtering is useful. First, retrieval of
objects from the original domain D based on the new query will
require more resources (compute power, storage space, network
bandwidth) than a negative query filter performed on the much
small domain DU. Second, if the query is a best match query
rather than an exact match query, the query-based elimination
filter can be used to get results that may be difficult for the user
to define with a single query to the original domain.

With regard to CodeMatch, the identifier filtering, statement
filtering, and comment filtering are forms of negative query
filters.

3.3.4 Threshold filter
Threshold filtering involves setting thresholds for displaying the
retrieved objects to the user. I define three kinds of threshold
filters, “relationship thresholds,” “ranking thresholds,” and
“number thresholds.” Combinations of these thresholds are also
possible.

3.3.4.1 Relationship threshold
With a relationship threshold the value used for determining the
threshold is the Ri relationship between the query and the

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 694 ISSN: 1690-4524

objects. In other words, any object Oi with relationship Ri that is
less then threshold T gets eliminated from user domain DU.

3.3.4.2 Ranking threshold
The threshold filtering can be based on the information display
ranking. For example, the Google PageRank criteria can be used
such that any object Oi with rank Pi that is less then threshold T
gets eliminated from user domain DU.

3.3.4.3 Number threshold
Number filtering is the process of simply reducing the number
of files in the user domain DU to one that is more manageable. It
requires that the information retrieval method be a best match
method or that the information display process uses a ranking
method (otherwise, all retrieved objects have equal relationships
to the query and eliminating a specific number of them would
have to be arbitrary). Given a number threshold N, if the
retrieval method is best match, the objects Oi are ordered from
highest to lowest by their relationship Ri until the number of
objects displayed is N. If the retrieval method is exact match but
the display process uses a ranking method, the objects Oi are
ordered from highest to lowest by their ranking Pi until the
number of objects displayed is N.

Note that thresholds need not be minimum thresholds.
Maximum thresholds and combinations of minimum and
maximum thresholds may be appropriate if the user wishes to
study various aspects of the retrieved information such as
statistical distributions of the information.

With regard to CodeMatch, the threshold filtering is, obviously,
a form of a threshold filter.

3.3.5 Object relationship filter
An object relationship filter allows the user to select an object Oi
that the user feels is characteristic of an object that belongs in
the user information domain DU or does not belong in the user
domain DU. All similar objects are then removed, or all
dissimilar objects are removed, depending on whether the filter
is a “positive object relationship filter” or a “negative object
relationship filter.”

3.3.5.1 Positive object relationship filter
The user selects an object Oi and specifies a minimum
relationship value RM. Object Oi and all objects Ok such that the
relationship Rik between objects Oi and Ok is greater than or
equal to the minimum relationship value RM are eliminated from
the user information domain DU. In this case, object Oi is
selected as an example of an object that the user feels is not
relevant.

3.3.5.2 Negative object relationship filter
The user selects an object Oi and specifies a minimum
relationship value RM. All objects Ok such that the relationship
Rik between objects Oi and Ok is less than the minimum
relationship value RM are eliminated from the user information
domain DU. In this case, object Oi is selected as an example of
an object that the user feels is relevant.

Object relationship filtering allows user to select objects to be
included or excluded from the user information domain without
understanding the details of why the object is relevant or is not
relevant.

4. APPLICATIONS
I have now defined various kinds of post-retrieval filtering. This
kind of filtering has worked very well for CodeMatch, a

program that finds correlation amongst software source code
files. There are many other applications to which post-retrieval
filtering can be applied that will offer many advantages to a
user. Obviously Web searching can be greatly improved.
Particularly for users who are not technically savvy, post-
retrieval filtering can be used to narrow down search results that
may have been produced from a query that was too broad and
produced too many results.

Another related area where post-retrieval filtering can be
advantageous is e-commerce. Users can find a Web page
offering an item for sale. The Web page can be used as a query
employing a best match method of retrieval to find similar items
for sale at other locations on the Web. At that point, the user can
employ post-retrieval filtering to reduce the number of results to
a selection of items that the user can examine and decide to
purchase in a reasonable amount of time. In particular, object
relationship filtering can be employed, allowing the user to filter
the results without needing to specify the exact criteria used for
the filtering.

This paper refers to iterative filtering, because post-retrieval
filtering should be an iterative process. It requires
experimentation by the user. Some filters may turn out to
eliminate too many results while other filters may not eliminate
enough.

5. CONCLUSION
This paper has presented an example of post-retrieval filtering
from work done on CodeMatch, a commercial tool for finding
correlation between software source code files. Post-retrieval
filtering for CodeMatch has improved the time to find
plagiarized source code by an order of magnitude. The specific
filtering employed in CodeMatch was presented and explained.

The concept of post-retrieval filtering was then expanded,
generalized, and categorized as applied to all forms of
information retrieval. Some examples of applications of post-
retrieval filtering for Web searching and e-commerce were
presented.

In conclusion, better methods of information retrieval will
always be needed and these methods are improving regularly.
Better methods of information display are also useful and there
is a great demand for it as evidenced by the success of Google,
one of whose major innovations was in the area of information
display. Automatic filtering of retrieved information is a great
goal and research is going on in that area also. However,
automatic filtering may never be 100% accurate and manual
filtering has many great benefits that have yet to be fully
exploited.

REFERENCES
[1] Belkin, N. J. & Croft, W. B.: “Information filtering and

information retrieval: Two sides of the same coin?”
Communications of the ACM, 35(12), 29-38, 1992.

[2] Brin, S. & Page, L.: “The Anatomy of a Large-Scale
Hypertextual Web Search Engine,” WWW7 / Computer
Networks 30(1-7): 107-117, 1998.

[3] Burd, E. & Bailey, J.: “Evaluating Clone Detection Tools
for Use during Preventative Maintenance,” Proc. 2nd IEEE
International Workshop on Source Code Analysis and
Manipulation (SCAM) 2002, pp. 36-43, Oct. 2002.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 6 95ISSN: 1690-4524

[15] Parker, A. & Hamblen, J: “Computer Algorithms for
Plagiarism Detection,” IEEE Transactions on Education
Vol. 32, No. 2., pp. 94-99, May 1989.

[4] Chen, X., Francia, B., Li, M., Mckinnon, B, & Seker, A.:
“Shared Information and Program Plagiarism Detection,”
IEEE Transactions on Information Theory, vol. 50, pp.
1545-1551, 2004.

[16] Pirolli, P. & Card, S.K., “Information foraging,”
Psychological Review, 106: p. 643-675, 1999. [5] Ching Yiu, C. & Che Yin, I.: “Image Ranking Schemes

Using Link-Structure Analysis Algorithm,” Proceedings
International WWW Conference(11), 2002. [17] Salton, G. & McGill, M. J.: Introduction to Modern

Information Retrieval, McGraw Hill, New York, 1983.
[6] Clough, P.: “Plagiarism in natural and programming

languages: an overview of current tools and technologies,”
Research Memoranda, CS-00-05, Department of Computer
Science, University of Sheffield, UK, 2000.

[18] Zeidman, R.: “Software Source Code Correlation,” icis-
comsar, pp. 383-392, 5th IEEE/ACIS International
Conference on Computer and Information Science and 1st
IEEE/ACIS International Workshop on Component-Based
Software Engineering, Software Architecture and Reuse
(ICIS-COMSAR'06), July 2006.

[7] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T.
K., & Harshman, R.: “Indexing by latent semantic
analysis,” Journal of the American Society for Information
Science, 41(6):391-407, 1990.

Bob Zeidman is a Senior
Member of the IEEE, the
president of Zeidman Consulting
(www.ZeidmanConsulting.com)
a contract research and
development firm, and the
president of Software Analysis
& Forensic Engineering
(www.SAFE-corp.biz), that
produces tools for analyzing
software in order to detect

copyright infringement and trade secret theft. Among his
publications are technical papers on hardware and software
design methods as well as three textbooks – Designing with
FPGAs and CPLDs, Verilog Designer's Library, and
Introduction to Verilog – and has contributed chapters to
Newnes FPGAs Ebook Collection. He has taught courses at
engineering conferences throughout the world. Bob holds four
patents. He earned a master's degree in electrical engineering at
Stanford University and bachelor's degrees in physics and
electrical engineering at Cornell University.

[8] Faidhi, J. A. W. & Robinson, S. K.: “An empirical
approach for detecting program similarity and plagiarism
within a university programming environment,” Computer
Education Vol. 11, pp. 11-19, 1987.

[9] Foltz, P. W. & Dumai, S. T.: “Personalized Information
Delivery: An Analysis of Information Filtering Methods,”
Communications of the ACM, 35(12), 51-60, 1992.

[10] Kleinberg, J.: “Authoritative sources in a hyperlinked
environment” Journal of the ACM, 46, 1999

[11] Langville, A. N. & Meyer, C. D.: “Deeper inside
PageRank,” Internet Mathematics, 1(3), 335-400, 2005.

[12] Letsche, T. A. & Berry, M. W., “Large-Scale Information
Retrieval with Latent Semantic Indexing”, Information
Sciences, Vol. 100, pp. 105-137, 1997.

[13] Mayrand, J., Leblanc, C., & Merlo, E.M.: “Experiment On
The Automatic Detection Of Function Clones In A
Software System Using Metrics,” International Conference
on Software System Using Metrics, pp. 244–253, 1996.

[14] McGreevy, M. W.: “A practical guide to interpretation of
large collections of incident narratives using the QUORUM
method,” NASA TM-112190, Ames Research Center,
Moffett Field, Calif., 1997.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 5 - NUMBER 696 ISSN: 1690-4524

	S259RPB

