
Solving Knapsack Problems using Radius Particle Swarm Optimization fuse with
Simulated Annealing

Mudarmeen Munlin
Faculty of Engineering and Technology
Mahanakorn University of Technology

Bangkok, Thailand
mmunlin @gmail.com

ABSTRACT1
We present a novel approach to fuse the Radius Particle Swarm
Optimization and Simulated Annealing (RPSO-SA) to solve the
Knapsack Problems (KPs). The features RPSO-SA create an
innovative approach, which can generate high-quality solutions in
shorter times and more stable convergence characteristics. The
RPSO takes advantage of group-swarm to keep the balance between
the global exploration and the local exploitation. The SA gently
improves the candidate solution by searching for optimal solutions
within a local neighbourhood. The RPSO-SA combines the strong
global search ability of RPSO and the strong local search ability of
SA to reach faster optimal solution. In addition, there are two ways
of accepting a new solution. The method has been tested against the
knapsack problems. The results indicate that the combined approach
outperforms individual implementations of radius particle swarm
optimization and simulated annealing.

Keywords—Radius Particle Swarm Optimzation; Simulated
Annelling; Combined Algorithm; Knapsack Problem.

1. INTRODUCTION

The Knapsack Problems)KPs (are NP-hard that has been studied
in the last few decades, involving both and exact algorithms and
approximated methods. The exact approaches include branch and
bound [1] and dynamic programming [2]. The approximated
mainly include the hybrid algorithm [3] and meta-heuristic
algorithms such as radius particle swarm optimization (RPSO) [4],
simulated annealing (SA) [5] and genetic algorithm (GA) [6].

KPs are optimization problems in the binary domain and are used
for variety of practical problems, such as capital budget control,
resources allocation [7], project selection [8], cutting and packing
problems [9] and cryptography [10]. The KP is given a set of items
with weights and sizes and the capacity value of a knapsack in
order to maximise the total weight of selected items in the
knapsack to satisfy the capacity constraint. Due to its practical
values, Thiongane et al. [11] show the combination method to deal
with lagrangian heuristics, local searches, variable fixing and re-
optimization by a Sub-Gradient Algorithm (SGA). Bansal and
Deep [12] propose the Modified Binary PSO (MBPSO) to update
the MBPSO position term and to provide a new probability of
selection. Zhang et al. [13] converted the KPs to a directed graph
using the Network Converting Algorithm (NCA). Wang et al. [14]
propose an effective hybrid algorithm based on Estimation of
Distribution Algorithms (EDAs) that included a new probability
model based on specific knowledge to improve the convergence
speed.

1 I wish to thank Dr.Samart Moodleah for invaluable comments
and final proofreading of this paper.

We present a novel approach that combined the radius particle
swarm optimization and simulated annealing (RPSO-SA) for
solving the KPs. The results of the proposed method will compare
with the individual radius particle swarm optimization (RPSO) and
simulated annealing (SA).

2. RELATED WORK

This section introduces the knapsack problem (KP), the radius
particle swarm optimization (RPSO) and the simulated annealing
algorithm (SA) as well as their equations.

Knapsack Problem
There has been a lot generalization of the classical knapsack
problem, depending upon the distribution of the items. In this
paper, we focus the KPs such that 0-1 knapsack problem (KP):
each item may be chosen at most once and multi-dimension
knapsack problem (MKP): If we have n items and m knapsacks
with capacities not necessarily same and knapsack are to be filled
simultaneously.

0-1 Knapsack: In the classical knapsack problem (KP) we
have a set of items (i = 1, … , n) and a knapsack of limited
capacity. Each item we associated a positive profit p୧ and a
positive weight w୧. The problem for finding the set of items with
maximum overall profit among those whose total weight does not
exceed the knapsack capacity C. The problem may be formulated
so as the maximize the total profit f(x) as follows;

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) ෍ 𝑝௜ 𝑥௜

௜∈௡

 (1)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ෍ 𝑤௜𝑥௜ ≤ 𝑐

௜∈௡

 ; 𝑥௜ ∈ [0,1], 𝑖 = 1, … 𝑛

Where 𝑥௜ is a binary number, is equal 1 if and only if item 𝑖 is
selected. However, we cannot take all items because the total
weight more than the knapsack capacity.

Multi-dimension Knapsack: The multi-dimension knapsack
problem (MKP) is a generalization of the classic knapsack
problem. It consists of selecting a subset of given items in such a
way that the total profit of the selected items is maximized.
Therefore, the problem can be given follows;

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) ෍ 𝑝௜ 𝑥௜

௜∈௡

 (2)

 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ෍ 𝑤௜,௝ 𝑥௜ ≤ 𝐶௝

௜∈௡

 ∀𝑗 = 1, . . , 𝑚

 𝑥௜ ∈ [0,1], 𝑖 = 1, … 𝑛

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 5 - YEAR 2021 63

Where 𝑛 is the number of items, 𝑚 is the number of knapsack
constraints with capacities 𝐶௝, 𝑝௜ is the positive profit, 𝑥௜ is a binary
number, is equal 1 if and only if item 𝑖 is selected and 𝑤௜,௝ is the
positive weight of the knapsack’s constraints matrix.

Radius Particle Swarm Optimzation Algorithm (RPSO)
Radius Particle Swarm Optimization (RPSO) [4] is proposed by
extending the ring topology to include a set of neighbors using a
radius-based neighborhood in order to speed up convergence and
avoid the local optima. The RPSO is a simple concept, easy to
implement and computationally inexpensive. It extends the
traditional PSO algorithm by grouping particles within the same
radius into a new particle agent and then iteratively finding the best
solution under the given objective functions. The significant
concept of the RPSO is based on finding the agent particle within
the radius of a circle. Thus, it uses a swarm circle topology to find
the agent particle within the radius of the circle. Each particle in
the overlap radius can be in multiple groups. Once a group is
defined, it finds the best particle in that swarm group and assign to
the agent particle. Finally, the agent particles are the candidates for
finding the optimal solution, or the gbest position. To overcome
the premature convergence problem, the RPSO takes advantage of
group-swarms to maintain the swarm diversity and evolution by
sharing information from the agent particles, which effectively
keep the balance between the global exploration and the local
exploitation. Obviously, the agent particle guides the neighbouring
particles to jump out of the local optimum and achieve the global
best.

The Euclidean distance is used to calculate the radius-
neighbourhood between particle 𝑖 and particle 𝜃 using equation 3.

𝑑(𝑝௜ , 𝑝Ø) = ඨ෍ ൫𝑝௜,௝ − 𝑝Ø,௝൯
ଶ

௠

௝ୀଵ
 ; 𝑑 ≤ 2𝑟 , 𝑖 ≠ Ø , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛

,𝑓𝑜𝑟 1 ≤ Ø ≤ 𝑛 (3)

where

𝑝 = ൛𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥௡ ൟ

 𝑟 = 𝜇 ∙ 𝑣௠௔௫; 𝜇[0.0,1.0] (4)

In equation (4), the radius value (𝑟) of the particle is obtained.
Here, 𝑟 is determined by the maximum velocity (𝑣௠௔௫). Therefore,
𝑣௠௔௫ is assigned to the maximum bounds of the search space or the
feasible bounds in the benchmark function. We consider the
problem of finding the global optimum using the agent particle
(abest୧,୨) within a radius-neighbourhood as given in equation (5).

𝑎𝑏𝑒𝑠𝑡௜,௝ = min
ఉ∈ఘ

𝑓(𝛽) (5)

Therefore, the particle 𝑖 in the swarm updates it velocity and
position as given in equation (6) and equation (7), respectively.

𝑣௜,௝(𝑡 + 1) = 𝑤 ∙ 𝑣௜,௝(𝑡) + 𝑐ଵ ∙ 𝑅ଵ ∙ ቀ𝑝𝑏𝑒𝑠𝑡௜,௝ − 𝑥௜,௝(𝑡)ቁ

 +𝑐ଶ ∙ 𝑅ଶ ∙ ቀ𝑎𝑏𝑒𝑠𝑡௜,௝(𝑡) − 𝑥௜,௝(𝑡)ቁ (6)

 𝑥௜,௝(𝑡 + 1) = 𝑥௜,௝(𝑡) + 𝑣௜,௝(𝑡 + 1) (7)

Simulated Annealing Algorithm (SA)
Simulated annealing (SA) is a gradient method for the global
optimization problem which is firstly proposed by Kirkpatrick et al.
[5]. This algorithm gradually improves the solution by searching for
better solutions within a local neighborhood. There are two ways of
accepting a new solution: (1) if its fitness value is better than that of
the current solution; (2) by accepting a solution with a worse fitness
value with a certain probability. In the second case, the probability
is computed based on the difference in fitness values between the

new and current solution. Therefore, this acceptance probability
𝑃(𝑡)is defined by:

𝑃(𝑡) = 𝑒ି
∆௙೟
் (8)

Where 𝑇 is the current temperature (scaling parameter), ∆𝑓௧ is the
difference in the values of the result between the current and the
candidate solutions at step. The temperature has an initial value 𝑇଴
and it is reduced progressively according to a predefined cooling
schedule. The temperature at iteration on 𝑡 is calculated as follows;

𝑇(𝑡 + 1) = 𝛼 ∙ 𝑇(𝑡); 0 ≥ 𝛼 ≤ 1 (9)

Where 𝛼 is called the cooling rate. Note that the purpose of the
acceptance probability is prevents the algorithm from getting
trapped in a local optimum by allowing non-improving moves.
Thus, by allowing the current solution to worsen temporarily with a
given probability, simulated annealing is opens up the probability to
find the global optimum.

3. RADIUS PARTICLE SWARM OPTIMZATION FUSE WITH

SIMULATED ANNEALING

Motivation
The idea of RPSO-SA involves a fusion state and final state as
shown in Fig.1. In the fusion state, RPSO-SA is implemented using
the temperatures. Thus, the initial temperature is obtained by
dividing the difference between the maximum and minimum fitness
of the initial particle in the swarm by the acceptance probability.
The initial temperature is adaptive in each KP dataset. During
fusion state, the RPSO-SA finds the best solution and the proposed
algorithm skips local optima by allowing the exploration of the
problem space in the direction that leads to a local increase in the
next solution. In the final state, after the system is cool, each
particle in the swarm updates position using the best position from
the fusion state and then opens up to find the global optimum.

Fig.1. Convergence of RPSO-SA algorithm for MKP

The framework of RPSO-SA uses the strong global search ability of
RPSO and the strong local search ability of SA as shown in
Algorithm 1. In the RPSOSA, the global best position is selected
from agent particles in the search space. Additionally, there are two
ways of accepting a new solution. Hence, the RPSO-SA allows the
fitness of some particles may be accepting a solution with a worse
fitness within a certain probability by the metropolis process of SA.

The algorithm has the advantages of both RPSO and SA algorithms.
It solves the KPs with different dimensions and then we will
compare the results with both individual RPSO and SA algorithms
regarding solution quality and computational efficiency.

Solution representation
To solve the KPs, a candidate solution for KPs represent as the
dimension is the number of items n, as shown in Fig.2. For the
example, we have seven items and after the position of a particle is
updated, the position representation is: 0.20, 0.90, 0.10, 0.70, 0.05,
0.65 and 0.80.

64 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 5 - YEAR 2021 ISSN: 1690-4524

𝒋𝟎 𝒋𝟏 𝒋𝟐 𝒋𝟑 𝒋𝟒 𝒋𝟓 𝒋𝟔

0.20 0.90 0.10 0.70 0.05 0.65 0.80

Fig.2. Representation of the position in each dimension for KPs.

Transfer method
The basic idea of the position update equation for RPSO-SA in the
binary domain is taken from position update equation of binary
PSO. If a random number value is more than the sigmoid value of
the velocity then the position of particle takes the value 0 or 1, as
shown in Fig.3. For example, after the position of a particle is
updated with the sigmoid function and then compared to the
random number, the position representation is: 0, 1, 0, 1, 1, 1 and
1. We then select item number 2, 4, 5, and 6.

𝑣௜,௝(𝑡 + 1) 0.20 0.90 0.10 0.70 0.05 0.65

𝑆 ቀ𝑣௜,௝(𝑡 + 1)ቁ 0.55 0.71 0.52 0.67 0.51 0.66
Random number 0.63 0.55 0.97 0.09 0.47 0.26
𝑥௜,௝(𝑡 + 1) 0 1 0 1 1 1

Fig.3. Representation of transfer of positions for KPs.

4. E XPERIMENTS AND RESULTS

Knapsack test problems
The benchmarks are selected from MP-Test-data SAC-94 suite. A
set of 0–1 knapsack instances are taken from [15]. The proposed
method is tested using 24 different numbers of items 𝑛 and
knapsack constraints for 0–1KP and nine different problem classes,
each with different item/knapsack constraint combinations for
MKP. Therefore, the comparison is made on the basis of optimum
rate, best profit and average profit.

Parameter setting
The size of swarm is 60, iteration number is 4000 or 240000
function evaluations, 𝑥௠௔௫ and 𝑣௠௔௫ are equal and within the
range of [-4, 4], w is 0.98, the cooling rate α is 0.95 and frozen ε is
0.001.

0–1 KP result
Total of 24 0–1KP test benchmark functions are used to compare
the performance of RPSO-SA. Table 1 presents the numerical
result of 0–1KP produced by the three algorithms: RPSO-SA,
RPSO and SA.

It is obvious that RPSO-SA presents higher optimum rates for all
instances. It can also be seen that RPSO-SA is better than RPSO
and SA from the point of view of best profit and average profit. In
conclusion, RPSO-FA is relatively better than RPSO and SA.

MKP result
For the MKP, the convergence results of RPSO, SA and RPSO-SA
are demonstrated in Fig. 4 to 6. It is clearly shown that the RPSO-
SA has achieved the optimum solution faster than the other two
methods.

Fig. 4. Convergence of RPSO algorithm for MKP (Sent2.dat)

Fig. 5. Convergence of SA Algorithm for MKP (Sent2.dat)

Fig. 6. Convergence of RPSO-SA algorithm for MKP (Sent2.dat)

The MKP numerical results of the instance datasets are illustrated
in Table 2. The number of item instances range between 20 and 70.
Table 2 reports the detailed results produced by the three
algorithms: RPSO-SA, RPSO and SA. It is clear that RPSO-SA is
more reliable than RPSO and SA in terms of optimum rate, best
and average profit.

5. C ONCLUSION

The local optimum is frequently found in the knapsack problems.
Author proposed a novel approach to solve the knapsack problems
by combining the radius particle swarm optimization (RPSO) and
simulated annealing (SA) algorithm. The structure of the method
enables the advantages of RPSO which has strong global search
ability and SA which has strong local search ability to obtain
optimum solution rapidly. The basic idea of the algorithm consists
of fusion state and final state. In the fusion state, RPSO-SA is
implemented using the temperatures. The initial temperature is the
difference between the maximum fitness and minimum fitness of
the initial particle in swarm. During fusion state, the RPSO find the
best solution and the SA skip local optimum by allowing the
exploration of the problem space in directions that lead to a local
increase in the next solution. The final state, after the system is
cool, each particle in swarm update position by the best position
from the fusion state, then opens up to find the global optimum.
The RPSO-SA is applied to solve the well-known optimization
KPs and MKPs problems. It employs five datasets of the 0-1
knapsack and seven datasets of the multi-dimension knapsack

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 5 - YEAR 2021 65

problem. The experiments have shown that the performance of
RPSO-SA outperform the RPSO and SA.

6. REFERENCES

[1]. S. Goyal and A. Parashar, “A Proposed Solution to Knapsack
Problem Using Branch & Bound Technique”, Int. J. for
Innovative Research in Multidisciplinary Field, V.2(7),
2016, pp. 240-246.

[2]. A. Rong, and J. R. Figueira, “Computational performance of
basic state reduction based dynamic programming algorithms
for bi-objective 0–1 knapsack problem”, Computers and
Mathematics with Applications, vol. 63, 2012, pp.1462–
1480.

[3]. Z. Ren, Z. Feng , and A. Zhang, “Fusing ant colony
optimization with Lagrangian relaxation for the multiple-
choice multidimensional knapsack problem”, Information
Sciences, vol. 182, 2012, pp.15–29.

[4]. Mana Anantathanvit and Mudarmeen Munlin, “Using K-
means Radius Particle Swarm Optimization for the Travelling
Salesman Problem”, IETE Technical Review, vol. 33, 2016,
pp. 172-180.

[5]. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi,
“Optimzation by simulated anneling”, Science, Vol.
220(4598),1983, pp. 671-680.

[6]. Li Y., He Y., Li H., Guo X., Li Z., “A Binary Particle Swarm
Optimization for Solving the Bounded Knapsack Problem”,
Computational Intelligence and Intelligent Systems, 2019,
pp. 50-60.

[7]. K. Iwama and G. Zhang, “Online knapsack with resource
augmentation”, Information Processing Letters, Vol.
110(22), 2010, pp. 1016-1020.

[8]. E. Bas, “Surrogate relaxation of a fuzzy multidimensional 0–
1 knapsack model by surrogate constraint normalization rules
and a methodology for multi-attribute project portfolio
selection”, Engineering Application of Artificial
Intellience, Vol. 25(5), 2012, pp. 958-970.

[9]. M.M. Baldi, G. Perboli and R. Tadei, “The three-dimensional
knapsack problem with balancing constraints”, Applied
Mathematics and Computation, V.218, 2012, pp. 9802–
9818.

[10]. A. Pham, “The improvent knapsack chiper”, Computer
Comunications, Vol. 34(3), 2011, pp. 342-343.

[11]. B.Thiongane, A. Nagih, and G. Plateau, “Lagrangean
heuristics combined with reoptimization for the 0–1
bidimensional knapsack problem”, Discrete Applied
Mathematics, Vol. 154(15), 2006, pp. 2200–2211.

[12]. J. C. Bansal and K. Deep, “A Modified Binary Particle
Swarm Optimization for Knapsack Problems”, Applied
Mathematics and Computation, Vol. 218(22), 2012,
pp.11042–11061.

[13]. X. Zhang, S. Huang, Y. Hu, Y. Zhang, S. Mahadevan, and Y.
Deng, “Solving 0-1 knapsack problems based on amoeboid
organism algorithm”, Applied Mathematics and
Computation, Vol. 219(19), 2013, pp. 9959–9970.

[14]. L.Wang, S.Wang, and Y. Xu, “An effective hybrid EDA-
based algorithm for solving multidimensional knapsack
problem”, Expert Systems with Applications, Vol. 39(5),
2012, pp. 5593–5599.

[15]. MP-Test-Data SAC-94 [Online] Avaliable:
http://elib.zib.de/pub/mp-testdata/ip/sac94-suite/index.html

Algorithm 1 The framework of RPSO-SA for KPs.

1. //Step (1) Initialization

2. Set the parameters including swarm size, dimension size, t, 𝑡௠௔௫, 𝑣
௠௜௡

, 𝑣
௠௔௫

, 𝑥௠௜௡, 𝑥௠௔௫ , 𝑤, µ, 𝑐
ଵ
,

𝑐
ଶ
 temperatures (𝑇), cooling rate (𝛼) and frozen (𝜀)

3. Initialise each dimension of gbest position with 𝑥௠௜௡

4. Calculate the gbest value of gbest position with the fitness function

5. Initialise each particle with random position and velocity

6. for each particle in the swarm do

7. Calculate the fitness value of particle with the fitness function

8. Update its pbest value with its fitness value

9. Assign its position to its pbest position

10. if its pbest value better than the gbest value then

11. Update the gbest value with its fitness value

12. Assign its position to the gbest position

13. end if

14. end for

15. //Step (2) Reproduction and updating loop

16. t = 0

17. temperatures (𝑇) =
௠௔௫௜௠௨௠ ௙௜௧௡௘௦௦ ௩௔௟௨௘ ௢௙ ௣௔௥௧௜௖௟௘ି௠௜௡௜௠௨௠ ௙௜௧௡௘௦௦ ௩௔௟௨௘ ௢௙ ௣௔௥௧௜௖௟௘

୪୬ ଴.଺

18. for each iteration 𝑡 to 𝑡௠௔௫ do
19. for each particle in the swarm do

20. for each dimension in the particle do

21. Calculate the velocity by equation)3.4(

22. if its velocity value more than 𝑣
௠௔௫

66 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 5 - YEAR 2021 ISSN: 1690-4524

23. Update its velocity value with 𝑣
௠௔௫

24. else if its velocity value less than 𝑣

௠௜௡

25. Update its velocity value with 𝑣
௠௜௡

26. end if

27. Update the position by equation)3.5(

28. if its position value more than 𝑥௠௔௫

29. Update its position value with 𝑥௠௔௫

30. else if its position value less than 𝑥௠௜௡

31. Update its position value with 𝑥௠௜௡

32. end if

33. end for

34. Calculate the fitness value of particle with the fitness function

35. if its fitness value better than its pbest value then

36. Update its pbest value with its fitness value

37. Assign its position to its pbest position

38. end if

39. //Step (2.1) Find the agent particle on the radius-neighbourhood

40. Define the radius-neighbourhood by equation 3.1 and equation) 3.2(

41. Find the abest particle in the radius swarm group by equation)3.3(

42. Step (2.2) Find the gbest on the global neighbourhood

43. for each abest particle do

44. if fitness value of abest particle better than the gbest value then

45. Update the gbest value with the fitness value of abest particle

46. Assign abest position to the gbest position

47. else if (temperatures (T) is more than frozen (𝜀))

48. //Step (2.3) SA algorithm

49. Assign the gbest position to current solution

50. Generate the candidate solution on the current solution

51. ∆f = the finess value of candidate solution − the finess value of current solution

52. if the fitness value of candidate solution better than the fitness value of current

53. Update the gbest value with the fitness value of candidate solution

54. else if Random[0,1] > eି
∆౜

౐ then
55. Update the gbest value with the fitness value of candidate solution

56. Assign the candidate solution to the gbest position

57. end if

58. end if

59. end for

60. end for

61. 𝑇 = 𝛼. 𝑇

62. end for

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 5 - YEAR 2021 67

Table 1. The 0–1KP results.

Dataset Items OPT. Algorithm Optimum rate

(%)

Profit

Best Average
ks_8b 8 3813669 RPSO-SA 100 3813669 3813669
 RPSO 100 3813669 3813669
 SA 100 3813669 3813669
ks_12b 12 649859 RPSO-SA 100 649859 649859
 RPSO 85 649859 647645
 SA 66 649859 627645
ks_16b 16 9352998 RPSO-SA 96 9352998 9352818
 RPSO 92 9352998 9352601
 SA 74 9352998 9341252
ks_20b 20 9818261 RPSO-SA 88 9818261 9792115
 RPSO 86 9818261 9699235
 SA 72 9818261 9655125
ks_24b 24 12233713 RPSO-SA 70 12233713 12216251
 RPSO 65 12233713 12125120
 SA 30 12233713 11245230

Table 2. The MKP results.

Dataset m n Opt. Algorithm Optimum rate

(%)

Profit
Best Average

Pet2 10 10 87061 RPSO-SA 100 87061 87061

 RPSO 58 87061 83369

 SA 0 83369 80312

Pb4 2 29 95168 RPSO-SA 87 95168 94002

 RPSO 40 95168 90900

 SA 0 94801 90809

Pb5 10 20 2139 RPSO-SA 81 2139 2034

 RPSO 70 2139 2002

 SA 0 2088 1986

Pb6 30 40 776 RPSO-SA 68 776 680

 RPSO 15 776 652

 SA 0 686 642

Sent1 30 60 7772 RPSO-SA 65 7772 7723

 RPSO 34 7772 7758

 SA 0 6939 6272

Sent2 30 60 8722 RPSO-SA 42 8722 8512

 RPSO 5 8722 8112

 SA 0 8311 7995

Weish20 5 70 9450 RPSO-SA 89 9450 9206

 RPSO 60 9450 9014

 SA 0 7787 7078

68 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 19 - NUMBER 5 - YEAR 2021 ISSN: 1690-4524

	SA722QJ21.pdf

