

An Organizational-Technical Concept to Deal with

Open Source Software License Terms

Sergius DYCK, Daniel HAFERKORN, and Jennifer SANDER

 Fraunhofer IOSB, Karlsruhe, Germany

ABSTRACT

Open source software (OSS) released under various license

terms is widely used as third party libraries in today’s software

projects. To ensure open source compliance within an

organization, a strategic approach to OSS management is

needed. As basis for such an approach, we introduce an

organizational-technical concept for dealing with the various

OSS licenses by using procedural instructions and build

automation software. The concept includes the careful

consideration of OSS license conditions. The results obtained

from this consideration and additional necessary commitments

are documented in a so-called license playbook. We introduce

procedure instructions enabling a consistent approach for

software development using OSS libraries. The procedure

instructions are described in a way such that they can be

implemented for example for Java projects using the popular

build automation tool Apache Maven and the software

repository tool Nexus. We give guidance on how to realize such

an implementation on basis of automation tools in practice.

Keywords: open source software, open source compliance,

organizational-technical concept, procedure instructions, build

automation software, software engineering.

1. INTRODUCTION

Today’s software projects are often large and complex. Usually,

they make use of various third party libraries to reduce both

considerable engineering effort and development time.

Depending on the project, the software often includes many

third party libraries released under different OSS licenses. More

than 65% of companies surveyed in [1] use OSS in application

development.

OSS possesses some essential characteristics [2]. Any party has

the basic right to use the software. It is allowed to modify the

software, to generate derived works, and to transfer the software

to third parties. The source code of the software must be

available according to the conditions of many OSS licenses.

The respective OSS license applies to parties to which the OSS

is distributed. The OSS license grants the right to use the OSS

and, in return, a party using the OSS must comply with the

obligations according to the OSS license.

Many different OSS licenses are used for OSS projects. The

spectrum ranges from very popular OSS licenses, used in many

practical application fields and coordinated by a wider

community, to specific OSS licenses, used only by single OSS

projects that may be rather specialized. OSS licenses grant

different concrete rights and impose different obligations to the

party using the OSS [3].

Each OSS license imposes at least minimal obligations which

have to be adhered to by the parties using the corresponding

OSS. Depending on the implications of these obligations,

usually, one considers an OSS license as being more or less

restrictive. A common way to differentiate OSS licenses in

regard to their restrictiveness is for example to distinguish

between strong-copyleft licenses, weak-copyleft licenses and

non-copyleft licenses [4].

If OSS is used within a certain software project of an

organization, it must be ensured that all obligations to be

adhered to according to the used OSS license are satisfied

precisely. Any violation of these obligations constitutes a

considerable risk for the organization. For example, such a

violation may require cost-intensive changes of software

projects or it may cause damage to the reputation of the

organization [5].

In order to enable individual developers to make decisions with

regard to the concrete use of software under specific OSS

licenses, an organization may define its own OSS policy.

Different skills, areas of knowledge, and responsibilities of

software developers, executives, and legal counsels must be

brought together and coordinated to define such a policy and to

enable individual decisions in a well-founded and efficient way.

Such a policy can serve as a basis for enabling specific case-to-

case analyses and decisions.

To address open source compliance from a procedural point of

view, responsibilities must be assigned to personnel having the

appropriate positions for making corresponding decisions, being

suitably skilled and possessing the respective knowledge (to be

achieved for example by specific training activities). Thereby,

one must be aware that a significant difficulty with regard to

open source compliance is that the detailed analysis of the

obligations imposed by OSS licenses addresses - at least for the

concrete case - two domains, the technical domain and the legal

domain. Usually, a legal counsel may provide practical advice

with the aim to enable software developers to make individual

decisions in their daily business. However, as the concrete

consequences arising from the use of a certain OSS usually

depend on the concrete manner in which the software is used

within a software project, this advice cannot replace the

technical expertise of the software developers. For example, in

case of OSS licensed under a weak-copyleft license, only some

kinds of modifications of the corresponding OSS have to be

licensed under the original license when the software project

using this library is distributed. The question whether the

copyleft clause applies in the concrete case and which other

parts of the corresponding software project are affected by this

kind of “viral” effect cannot be answered without specific

technical knowledge. In this case the precise form of the

modifications as well as the specific use and integration of the

OSS within the software project are of relevance. These

technical details must be assessed by the software development

team.

68 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 ISSN: 1690-4524

To ensure open source compliance, OSS license compatibility

checks and the verification of fulfillment of all license

conditions are essential, at least before releasing a software

project. To ensure that all used OSS and the corresponding

licenses as well as all copyright information are captured, and

that the source code of the OSS is administered properly is of

crucial importance.

In this context it is also worth mentioning that some OSS is

released under several different OSS licenses as alternatives,

from which one has to be selected. This makes open source

compliance additionally difficult.

In principle, the used OSS and the accompanying OSS licenses

could be handled manually within an organization. However,

such an approach is error-prone, time-consuming, and requires a

profound knowledge of the employed OSS licenses including an

agreed general legal interpretation and the consideration of

cross-linkages between them. Tools and automation are critical

to ensure efficiency of the open source compliance process.

To address the described challenges, it is necessary to have a

strategic approach to OSS management - at least on the level of

an organizational unit. As a fundamental basis to that, we

worked out an organizational-technical concept for ensuring

open source compliance.

According to our investigation with regard to freely available

tools to ensure open source compliance, these tools target

mostly audit aspects and deliver reports or other kinds of

analysis results that need to be manually processed. Although

many of these tools can be included in a build automation setup,

they do not ensure open source compliance by themselves –

instead they merely detect possible open source compliance

issues. In contrast, our approach aims for a solution that is

firmly integrated in the software development and also ensures

open source compliance in every phase of the software

development lifecycle (SDL).

The concept we developed includes the careful consideration of

all relevant OSS license conditions. These need to be analyzed

and evaluated for their legal rights and obligations – where

necessary also supported by legal experts. For ambiguous or

unclear license conditions, decisions regarding how these cases

are to be approached need to be made and documented. The

documentation has to state precisely how the license conditions

are to be interpreted and what rights and obligations they are

deemed to represent. The results obtained and further

conclusions should be documented in a so-called license

playbook [6]. Such license playbooks are an easy-to-read and

digest summary of OSS licenses intended for software

developers to support them in SDL [7]. Our concept

furthermore includes procedure instructions to enable a

consistent approach when using OSS in software projects. The

procedure instructions take into account the necessary steps for

two use cases: introducing new libraries to a software project

already adhering to this concept as well as upgrading existing

so-called legacy projects, which are not yet rooted in this

concept.

From the technical point of view, the procedure instructions are

described in a way such that they can be implemented using the

popular build automation tool Maven and the software

repository tool Nexus. In addition, our concept intends for the

license texts to be managed together with the respective OSS

libraries and their source code in a software repository. This

allows publishing the necessary license terms and source code

archives together with the software deployment of a software

project by the means of its Maven configuration.

The remainder of this publication is organized as follows. Sec. 2

addresses essential aspects of related work and already

existing approaches for open source compliance from both the

organizational and the technical point of view. In Sec. 3, we

summarize the main objectives of our approach and discuss its

organizational and technical aspects. In Sec. 4, the essentials of

the procedural instructions being part of our approach are

presented. In Sec. 5, we describe how such an implementation

can be realized in practice using the OSS tools Maven and

Nexus Repository. Finally, in Sec. 6, we give a conclusion and

indicate topics for future work.

2. RELATED WORK AND SIMILAR APPROACHES

In order to handle OSS and the corresponding legal issues

properly, an open source compliance management has to be

established on an organizational level. [8] gives advice how this

could be implemented, especially also with regard to

establishing appropriate open source compliance procedures.

As part of the described process, an open source compliance

manager needs to be appointed and an OSS review board needs

to be set up. The open source compliance manager must have a

solid understanding of all aspects of open source compliance as

well as technical knowledge, as he acts as contact person

between development staff and legal counsel. The OSS review

board, directed by the open source compliance manager, is

typically responsible for coordinating the use of OSS in projects

and products as well as for OSS reviews and audits prior to

deployments/releases. An OSS review consists of source code

audits and dependency linkage audits to determine the OSS

components being used in the software project that is to be

released. The result of the review is a report that lists all OSS

components along with respective details and metadata such as

the used version and the corresponding OSS license.

A manual review would be complex and time-consuming.

Furthermore, a review should be considered a recurring event.

Therefore, the establishment of an automated system for OSS

audits is recommended by [8]. To this aim, several OSS

organizations/initiatives as well as companies have released

various analysis and reporting tools. We reviewed the ones that

are relevant according to [9] in detail. Our emphasis lies on

using OSS tools for achieving open source compliance. We

thereby focused on OSS solutions and excluded commercially

distributed tools consciously from the detailed analysis.

Many tools being available to support open source compliance

are dealing with source code analysis and dependency linkage

analysis to determine what OSS libraries have been used and

which licenses have to be acknowledged and complied to. For

example, the source code scanning tool FOSSology mentioned

in [9] performs license, copyright, and export control scans on

the source code and creates reports in the common Software

Package Data Exchange (SPDX) format. These reports can be

used to generate formatted license reports. The tool can also be

integrated into software development and deployment

lifecycles.

The Open Source License Checker mentioned in [9] works

similar to FOSSology by trying to match source code files

provided by the user to license texts from an internal database.

However, it is apparently not in active development anymore.

Another common open source compliance tool mentioned in [9]

is the Binary Analysis Tool. It focuses on analyzing binary

software packages such as Executable and Linkable Format

(ELF) files, Android packages and Java classes and on detecting

possible compliance issues in the binary code. This is done

using pre-defined and customizable rules and an internal

database with information extracted from the source code of the

OSS.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 69

These three tools, FOSSology, Open Source License Checker

and Binary Analysis Tool, are suited to support for example an

open source compliance manager in the audit process prior to a

release. But at this point, the OSS may have already been

heavily integrated in a software project. Hence, in the worst

case, the audit could reveal the necessity for cost-intensive

changes to the software project due to the need to replace the

OSS library, for example with another one than can be used

without concerns regarding open source compliance.

To avoid scenarios like this, [6] suggests to define and to

implement an internal process which forces the software

developers to consult with an open source compliance manager

prior to using an OSS component in a software project.

However, in daily business, this may not always be a

practicable solution, for example waiting for the response could

delay the work to be done by the software developers.

Therefore, a process is needed which ensures open source

compliance and which works closely in an automated way

within the SDL – such that the software developers are not

constrained when adding OSS to their software projects and are

able to do so using a well-defined process. The next sections

describe the process that we developed for this purpose.

3. OUR APPROACH

Our approach aims for a solution that is firmly integrated in the

SDL. The resulting organizational-technical concept is designed

according to three main objectives:

 to support the developers to deal with OSS in their

daily work;

 to ensure compliance with regard to the license terms;

 to enhance the deployment process – especially in

such a way that relevant OSS licenses and the source

code of the used OSS libraries are packaged

automatically.

The concept consists of organizational aspects and technical

aspects. The organizational aspects include procedure

instructions for software developers when planning to use new

OSS in a software project that need to be followed manually,

supplemented by a license playbook. The technical aspects

allow the use of build automation tools to support and verify

open source compliance during the SDL.

For each OSS library that is newly introduced into a software

project, the procedure instructions specify a series of steps to

check various conditions for the integration of the new OSS

concerning its license terms and ensuring that any problems

related to license conditions are being solved prior to its use.

They are also designed to ensure that all the necessary

adjustments and extensions to the project configuration have

been made and that the new OSS library has been integrated

into the software repository in a well-defined form.

Afterwards, the deployment process in the SDL has to be

adjusted so that the result of the procedural instructions can be

used as a basis for ensuring open source compliance during the

deployment process. In our case, these technical adjustments

resulted in changes to our Java projects that use Maven as a

build automation and build lifecycle tool.

There are several possible ways to use Maven as a support tool

for open source compliance. As a first approach, we initially

looked for existing build tools and Maven plugins to support

open source compliance as part of the SDL and found various

similar plugins, for instance the License Maven Plugin. These

tools make use of the metadata that is available in Maven

dependencies to create dependency lists and license reports.

They also address the common problem that the metadata often

does not conform to official naming conventions or is outright

missing, by providing temporary replacement values for the

original metadata values. However, we found that this usually

needs to be done on a per-project basis. In consequence, having

several projects using the same dependencies that need to be

managed is redundant and error-prone. We therefore looked for

other solutions.

A more feasible approach takes into account the repository from

which these dependencies come from and stores the additional

information in a way that can be used in a normal deployment

process without complex processing or transformation. We

modified our procedural instructions accordingly over several

iterations to make use of this approach.

The procedure instructions of our concept are described in detail

in Sec. 4 and the technical background using build automation

software is detailed in Sec. 5.

4. PROCEDURE INSTRUCTIONS

The organizational aspects of our concept are the procedure

instructions. They are specifically designed for software

developers who want to add a new OSS library to one of their

software projects. The procedure instructions are formulated in

a way that no in-depth knowledge of OSS licenses is required

for their steps. The process of adding a new OSS is described in

the following by using flow charts. Simple and complex steps

are being distinguished. Two of the complex steps are displayed

within their own diagrams and described in more detail.

Fig. 1 depicts the process that must be followed when adding

new OSS to a project. The first step is to check whether the

required OSS is already contained in the local software

repository. If this is not the case, the step add new library must

be performed. This is a complex step which is further illustrated

in Fig. 2 and described in detail in the next paragraph. If the

OSS is already contained in the software repository, it has to be

checked whether a corresponding license classifier file has been

uploaded yet. The license classifier file contains the license text

and is named as follows: <groupid>-<artifactid>-<version>-

license.txt. On the one hand, this file is used as a flag to

document the successful integration of the OSS library into the

software repository. On the other hand, it is used to

automatically gather the license files during a deployment

process. See [10] for more information about the classifier tag.

If the license classifier already exists, one can proceed to the

next sub-process concerned with fulfilling project specifics, e.g.,

specific requirements. The absence of the license classifier

indicates that the deployment of the library is not in the well-

defined state. A separate sub-process handles such legacy

libraries. These are libraries that have been introduced into the

repository previously to establishing our organizational-

technical concept and thus are dubbed as legacy libraries. If one

of the sub-processes add new library or handle legacy library

has to be aborted, i.e., cannot be processed successfully, the

entire process of adding a new OSS is immediately terminated.

The library cannot be used in this case. One such example is

that an internal policy might forbid the use of strong-copyleft

licenses. When the respective sub-process has been traversed

successfully, the license classifier is uploaded to the repository

as a result. Afterwards, it has to be ensured that the project

specific requirements are being fulfilled. The usage of the

desired OSS library is only allowed if this sub-process is also

successful.

70 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 ISSN: 1690-4524

Start

Check
repository

Check
license

classifier

Yes

Add new
library

Library
available?

no

Handle
 „legacy“

library

Successful?

no

yes Successful?

yes

Exists?

no
yes

P

Termination

(fail)

End

(success)

Add
license

classifier

Fulfill
project

specifics

P Step Playbook

 Sub-process

Figure 1 – Flow chart depicting the process “Add new OSS”

defined in the procedure instructions.

Fig. 2 shows a more detailed view on the sub-process used to

add a new library. Before getting started, it shall be checked if a

newer version of the OSS library is available. If possible, the

latest version should be chosen. This is not possible, e.g., when

a serious error is known to exist in the latest version or project-

specific constraints require a particular, older version. As a next

step, the type and version of the license under which the library

was released have to be obtained. If this information is missing

and cannot be discovered, it is not possible to check the license

conditions. In this case, the process has failed and the desired

library cannot be used. In case of successfully obtaining license

type and version, it has to be checked if the license is contained

in a blacklist. If this is the case, the process is terminated, too. If

the license is not listed in the blacklist, the license terms have to

obtained, e.g., as a text document. In most cases, these license

terms are provided within the library distribution. In other cases,

if the maintainer of the OSS library was remiss to provide a

license document, an online search for the license terms can be

necessary. If the license terms cannot be obtained, the process is

again terminated, as it is not possible to check whether the

library can be used or not. After successfully obtaining the

license terms, they have to be checked. This sub-process will be

described in detail in the next paragraph. If the checking is

negative, the process fails. Otherwise, the sub-process of

downloading the source code and uploading it to the software

repository has to be performed. If the source code is required

for delivery according to the license terms but cannot be

obtained (e.g., from the Maven Central projects website,

author's website), the process is again terminated.

Start

Check

license

terms

Available?

B

Get license

type & version

Check

blacklist

yes

Contained?

Termination

(fail)

yes

no

Get

license terms
no

Available?*

yes

Can terms

be met?*

Obtain &

upload

source code

yes

Successful?

P

End

(success)
yes

If source code is required

but cannot be obtained

Choose
latest

version

P

B

 Step Preperation Step Playbook

 Sub-process Blacklist

* Negative path leads to termination of the process

Figure 2 – Flow chart depicting the sub-process “Add new

library” used in the process “Add new OSS”.

As indicated in Fig. 3, two actors are directly involved in the

sub-process check license terms. As a first step of this sub-

process, the developer checks the license terms using a license

playbook. License playbooks are an easy-to-read and digest

summary of OSS licenses intended for software developers [6].

In case of licenses that are rather uncomplicated (like BSD or

MIT license), the developer may decide by himself if usage of

the examined license is permitted or not, and therefore if it can

be used in a project or not. Afterwards, he informs the open

source compliance manager about his decision. The open source

compliance manager verifies the decision. In the case that he

confirms the decision, the sub-process check license terms ends

successfully. If making a decision by the developer on its own

is not possible, he just informs the open source compliance

manager who then checks the license terms by himself. For

getting first hints, he may check the license terms using external

sources like the Open Source License Compendium [11]. In

addition, the license terms have to be checked against

organizational guidelines, commitments and policies. If

necessary, the open source compliance manager asks for

support by the legal counsel before he makes his decision. If he

decides that the use of the library is not allowed, the license

type and version are added to the blacklist and the sub-process

fails. If he decides that the use is allowed and if the license is

new (i.e., firstly used), the corresponding license is added to the

license playbook and the sub-process ends successfully.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 71

Developer
OSS Compliance

Manager

Start

Decision

possible?

P

End

(success)

Check

license terms

Make a

decision

yes

Check

license terms

no

Decision

possible?

Make a

decision

yes

Verify

decision

New license

type?

Add to

playbook

P

no

P

B

Get legal

council
no

Confirmed?*

yes

yes

Decision

positive?

yes

Termination

(fail)

no

Add to

blacklist

 Step Playbook

 Sub-process Blacklist

* Negative path leads to check license terms

Figure 3 – Flow chart depicting the sub-process “Check license

terms” used in the process “Add new library”.

In addition to the process for adding new OSS libraries to a

software project that has been described so far, a similar process

has been defined for upgrading legacy projects.

These procedure instructions are a necessary foundation to

automate the deployment. The following section describes how

an automated deployment can be realized.

5. USE OF BUILD AUTOMATION SOFTWARE

Our approach relies heavily on the SDL and the software

development tools that we already use in practice. The build

automation tool Maven is used in all our current projects.

During a typical build lifecycle, it fetches project-specific OSS

dependencies from a software repository. According to best

practice, we have established a proxy repository for caching

these external dependencies which is also used to manage

internal dependencies and build artifacts, using the OSS Nexus

Repository.

A typical Maven repository is not only used to manage OSS

binaries, but also to store the source code of the OSS. Maven

differentiates between the OSS artifacts themselves and related

files by so-called classifiers, such as “javadoc” for

documentation and “sources” for source code of the OSS.

Additional classifiers for specific related file types may be used.

In practice, some project maintainers do not upload the source

code of their OSS for undisclosed reasons. In order to make

sure that all source code for a specific software release can be

downloaded from the same source, a hosted repository has been

added to the local Nexus installation, where source code not

provided by the Maven central repository is uploaded and

managed locally.

Similarly to the additional hosted repository for self-managed

source code artifacts, another hosted repository has been added

to serve as a storage and management facility for all OSS

license files in plain text format, using the “licenses” classifier.

These two hosted repositories provide the storage for license

and source code files obtained through the procedure

instructions. What remains to be done in order to ensure open

source compliance during the deployment process in relation to

the distribution of the software together with the OSS source

code and license terms, is the configuration of a Maven-based

project to automatically manage these artifacts of OSS

dependencies during the SDL. Maven already provides a

configurable plugin to pull data from the repository, the Maven

Dependency Plugin.

This plugin is primarily used to download dependencies

themselves for release and deployment purposes. It can however

also be configured to download related files of a dependency,

based on the given classifier. The configuration is done via a

XML file, the so-called Project Object Model (POM) file. The

following Listing 1 gives an example of such a plugin

configuration:

<plugin>

 <artifactId>maven-dependency-plugin</artifactId>

 <version>2.10</version>

 <executions>

 <execution>

 <id>copyLicenses</id>

 <phase>package</phase>

 <goals>

 <goal>copy-dependencies</goal>

 </goals>

 <configuration>

 <classifier>licenses</classifier>

 <type>txt</type>

 <outputDirectory>licenses</outputDirectory>

 <includeScope>runtime</includeScope>

 <prependGroupId>true</prependGroupId>

 <excludeGroupIds>

 com.example

 </excludeGroupIds>

 <failOnMissingClassifierArtifact>

 true

 </failOnMissingClassifierArtifact>

 </configuration>

72 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 ISSN: 1690-4524

 </execution>

 </executions>

</plugin>

Listing 1: Example dependency plugin configuration.

The displayed example configuration with the id

“copyLicenses” shows an execution of the “copy-dependencies”

goal of the plugin during the “package” lifecycle phase of a

build process. The configuration details define that all declared

runtime dependency files with the classifier “licenses” and the

file type (= file extension) “txt” are to be put in the licenses

folder, using the naming convention that also contains the group

identifier (= fully qualified name). If the build also contains

internal dependencies for which the related files of the

respective classifier should not be copied, they may be

excluded. In this example, this has been done for all

dependencies of the group “com.example”.

In case where a dependency file with the appropriate classifier

cannot be found, the build process is set to fail, thus making the

developer aware that there is an issue that needs to be resolved.

If a continuous build environment with an appropriate alarm

and notification setup has been put in place, the open source

compliance manager can also be automatically informed in case

of issues during the build process relating to license texts and

source code of OSS dependencies.

By adding another execution definition and using respective

parameters in the plugin configuration, the source code of all

declared dependencies can also be downloaded as part of the

automated build process.

6. CONCLUSION AND FURTHER WORK

In this publication, an organizational-technical concept

addressing OSS license terms was presented. Our aim was to

define and to implement a solution for open source compliance

that is firmly integrated in the SDL. Therefore, the created

organizational-technological concept combines different means.

Firstly, it defines processes that enable software developers to

include OSS libraries properly into software projects while

ensuring open source compliance under minimal involvement of

specialized professionals such as an open source compliance

manager or legal counsels. These processes are implemented as

procedural instructions based on a process flow illustrated by

flow charts and backed by a so-called license playbook,

summarizing the most important aspects for handling the terms

of different types of licenses. Secondly, for ensuring open

source compliance on the technical side, the employment of

existing build automation tools and software component

management tools for this purpose is made possible by several

technical extensions to the software deployment process.

Several key points are planned to be addressed with regard to

future work:

 Practical tests conducted so far for single software

developers have shown that additional refinements

and a more detailed description of the steps in the

procedure instructions may be necessary in order to

make the processes easier to adhere to.

 On the technical side, means to generate OSS usage

reports including details such as the OSS name, its

version and the given license are also considered to be

necessary in the future.

 Furthermore, the metadata that is being used for the

report generation could be also employed to

automatically generate acknowledgements and

attributions for end-user documentations as well as

possible splash or info screens for the compiled

software project.

 In addition, it is planned to enhance the license

playbook by a license compatibility matrix which will

serve as a simple view to show incompatibilities

between licenses (as described by [12]).

 Finally, the implementation of categorizations of OSS

licenses in the license playbook, for example

according to the scheme non-copyleft, weak-copyleft,

strong-copyleft licenses, may be helpful.

7. REFERENCES

[1] 2016 Future of Open Source Survey Results, Black Duck

Software, 2016,

http://de.slideshare.net/blackducksoftware/2016-future-of-

open-source-survey-results/13 (date accessed: June 1,

2016).

[2] T. Jaeger, A. Metzger, Open Source Software - Rechtliche

Rahmenbedingungen der Freien Software, Verlag C.H.

Beck, 3. Edition, 2011.

[3] A. M. St. Laurent, Understanding Open Source and Free

Software Licensing, O'Reilly Media, 2004.

[4] C. Subramaniam, R. Sen, M. L. Nelson, Determinants of

open source software project success: A longitudinal

study, Decision Support Systems, Vol. 46, Issue 2, January

2009, pp. 576-585.

[5] I. Haddad, Open Source Compliance, 2014,

http://de.slideshare.net/SamsungOSG/guide-to-open-source-

compliance/41 (date accessed: June 1, 2016).

[6] I. Haddad, 7 Steps to Strengthen Your Open Source

Compliance, Samsung Open Source Group Blog, 2015,

https://blogs.s-osg.org/7-steps-to-strengthen-your-open-

source-compliance/ (date accessed: May 20, 2016).

[7] M. Dolan, 5 Practical Ways for Legal Counsel to Advise

Developers on Open Source, Linux Blog, 2015,

https://www.linux.com/blog/5-practical-ways-legal-counsel-

advise-developers-open-source (date accessed: May 25,

2016).

[8] P. Koltun, Free and Open Source Software Compliance:

An Operational Perspective, International Free and Open

Source Software Law Review, Vol. 3, No. 1, 2011, pp. 95-

101.

[9] Resources for Open Source Compliance, Open source

Initiative, https://opensource.org/node/539 (date accessed:

May 31, 2016).

[10] J. Lalou, Apache Maven Dependency Management,

Packt Publishing, 2013.

[11] K. Reinckey, G. Sharpez, R. Dauster, Open Source

License Compendium, Version 0.99.3, Deutsche Telekom

AG and GIDO GmbH, 2014,

http://opensource.telekom.net/-oscad/static/pdf/oslic-

0.99.3.pdf (date accessed: May 31, 2016).

[12] T. Kreutzer, Open Source Lizenzmanagement,

Vortrag bei den Kölner Tagen Informationsrecht, 2010,

http://www.slideshare.net/littk/open-source-

lizenzmanagement (date accessed: May 25, 2016).

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 3 - YEAR 2016 73

http://de.slideshare.net/blackducksoftware/2016-future-of-open-source-survey-results/13
http://de.slideshare.net/blackducksoftware/2016-future-of-open-source-survey-results/13
http://de.slideshare.net/SamsungOSG/guide-to-open-source-compliance/41
http://de.slideshare.net/SamsungOSG/guide-to-open-source-compliance/41
https://blogs.s-osg.org/7-steps-to-strengthen-your-open-source-compliance/
https://blogs.s-osg.org/7-steps-to-strengthen-your-open-source-compliance/
https://www.linux.com/blog/5-practical-ways-legal-counsel-advise-developers-open-source
https://www.linux.com/blog/5-practical-ways-legal-counsel-advise-developers-open-source
https://opensource.org/node/539
http://opensource.telekom.net/-oscad/static/pdf/oslic-0.99.3.pdf
http://opensource.telekom.net/-oscad/static/pdf/oslic-0.99.3.pdf
http://www.slideshare.net/littk/open-source-lizenzmanagement
http://www.slideshare.net/littk/open-source-lizenzmanagement

	SA725JZ16

