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ABSTRACT1 

 

The connectedness of the social network gives rise to a 

new challenge of how to efficiently sample the network 

and keep the graph properties and topology properties as 

well. Inspired by R-MAT and Kronecker graph 

generators, based on the observation of different graph 

topology types, we proposed to use Kronecker graph as 

the prime graph to conduct Kronecker graph double cover 

through periphery subgraphs.  First of all, the 

connectedness of the graph remains during graph 

merging. Secondly, only redundant vertices and edges are 

merged so that the characteristics of the graphs are kept. 

Also, graph merging only works on periphery subgraphs 

from low degrees to higher up so those topology 

properties are kept. Finally, although some edges are 

merged, since the similarity groups generated based on 

Kronecker graph similarity is independent of the degree 

distribution, Kronecker double cover operation does not 

affect the graph degree centrality measure. We 

theoretically prove the feasibility of the Kronecker 

double-cover operation and also compare the quality of 

the sample set with Snowball sampling and Es-i sampling 

sets. Experimental results show us that, when the 

separation of the core and periphery subgraphs is between 

mean (the average of the degrees) and mean+std (standard 

deviation of the degrees), the topology types and graph 

properties can be preserved. This conclusion confirms the 

existence of the topology types, and also proves the 

topology types of the real-world graphs are not random.  

Keywords: Graph sampling, Topology types, Cartesian 

Products, Kronecker Double Cover, Graph Density, 

Graphon 
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1. INTRODUCTION 

 
Based on the self-similar nature, graphs can be generated 
through edges, as shown in [6], and subgraphs, as shown 
in [13]. We want to apply these ideas to graph sampling 
that, given a graph, instead of dropping subgraphs to data 
sets we define a recursive process to consistently merge 
similar subgraphs to shrink sample set sizes.  
 
The subgraphs are selected based on the prime graph, such 
as R-MAT and Kronecker graphs. In comparison with 
graph generators, the merging process is based on original 
graphs so that the impact on the graph properties and 
graph topology types can be evaluated during graph 
sampling. 
 

Network research has been conducted for many years, 
especially in the fields of physics and mathematics. There 
are many different types of networks, such as social 
networks, power grid networks, communication networks, 
and so on. The structure of the network is represented by 
graphs in the data structure, and by an adjacent matrix in 
mathematics. For finite graphs and graph morphisms, the 
connectedness can be preserved during projection and join 
operations and be recovered under pullbacks [8]. This 
property can ensure that graph merge and graph product 
can preserve the connectedness of the graph. In comparison 
with random sampling, it is much easier to maintain the 
graph properties and topology properties through graph 
merging. 

In this paper, we discuss related work in section 2, section 
3 introduces related theory for interesting layer construction 
and network decomposition. In section 4, we discuss the 
construction of interesting layers. In section 5, we present 
experiments on several data sets. We conclude our work in 
section 6. 
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2. RELATED WORK 

 
Graph Theories and Operations 

For finite graphs without loops or multiple edges, the 

operations we need for graph sampling include graph 

decomposition, reconstructible graph, X-graph join, and 

Kronecker double covers. These operations have been 

generally discussed. 

 
The conditions of indecomposable and decomposable 
graphs were given in [15] and it also indicated that 
conversion from indecomposable graphs to decomposable 
graphs can be done by removing some edges.  

Graph automorphisms, connectedness and partition of 
joined graphs, especially X-join graphs, were defined in 
[12]. Graph X-join operation is to replace each x of X by 
graph Yx. The problem of finding necessary conditions that 
G(X*Y) consists precisely of those automorphisms 
induced by automorphisms of G(X) can be used to 
determine the topology of X-join graphs. When we apply 
graph X-join to symmetric graphs, such as Kronecker 
graphs, the connectedness and the properties of the 
topology of jointed graphs can be verified. 

Graph double cover is a graph projection operation given 
in [16]. Similar to Cartesian product of two graphs, graph 
double cover checks both of the two vertices on each edge 
but merge both vertices if they are similar, which is a two-
fold projection onto G and preserves local structure as well. 
For graph sampling, to keep the local structure, we choose 
to use a graph double cover to fold similar edges and 
vertices instead of removing them. 

The local projection of graphs was discussed in [8]. When 
graphs can be divided into subsets, local projection can be 
conducted through graph product, n-fold cover, and other 
graph operations. Functional operations can be defined in 
categorical graphs. These operations map vertices to either 
the same vertices, in which vertices are merged or different 
vertices, in which new edges are built. 

When conducting graph operations, graph properties can 
be estimated with Additive combinatorics and extreme 
graph theory [17]. For example, the maximum number of 
edges, the maximum number of distinct distances, the 
maximum number of triangles, and other quantities of the 
graphs can be estimated during edge removal, subgraph 
removal, randomized construction, and algebraic 
construction.  

Graph Generators 
Graphs can be generated recursively with individual graph 
patterns, such as R-MAT [6], and Kronecker Graphs [13]. 
This gives rise to the question if we can sample the graph 
by recursively factorizing the graph with these meaningful 
graph patterns and finding the useful portion of the graph, 
meanwhile, graph topology and graph properties can be 
maintained. 

R-MAT [6] partition a social network into four regions: 
partition a and d represent separate groups of nodes that 
correspond to communities, and partition b and c are the 
cross-links between these two groups, such as friends of 

separate interests. Although R-MAT algorithm locates 
edges into an adjacent matrix, the distribution of edges in 
the four regions and the correlation among edges in the four 
regions are random and not related to topology types. 
Given the definition of the four regions, we have to define 
which edges belong to the core set and which edges belong 
to the periphery set, which cannot be done by randomly 
dropping edges into different regions. 

In [1], the combing problem in R-MAT generator was 
discussed that the graph distribution is combed at regular 
geometric intervals. The symptom of this combing problem 
is that certain degrees are not showing and those are 
between regular intervals. The combing problems confirm 
the weakness of R-MAT generator that, other than the 
meanings of the edges in four regions, the topology types 
of the graphs also need to be simulated.  

Similar to R-MAT, in [1], sample sets are constructed by 
randomly choosing edges. The methodology selected 
edges randomly with no regard to the four regions and the 
probability of edges in the four regions. The idea is that 
randomly selected edges can be used as a seed set so that 
the sample set can be expanded by adding the connections 
between vertices in a sample set. In practice, after the seed 
set of edges is selected, only a few connections can be 
found between those vertices in the seed set. 

Kronecker product [13] takes advantage of the symmetric 
structure which can ensure to produce of self-similar 
graphs of any size, match the combination of graph 
properties, and simplify graph operations to iterative 
processes, such as graph join and projection. Kronecker 
graph structure is also the smallest symmetric graph pattern 
which can be used as a prime graph for the graph 
computation. Kronecker product can also be used to 
factorize and expand graphs [4] [5].  

Graph Sampling 
Snowball sampling [9] is a random vertex sampling 
methodology. The sampling process starts with k 
individual vertices, each individual vertex call k more 
individuals, this process is conducted repeatedly in s 
stages. For networked data, multiple-stage sampling is a 
better option, so that the difference between the sample sets 
and the original data can be observed. 

In [14], graphs are divided into low-dimensional 
embeddings of the neighborhood information of each node. 
The number of vertices and edges are not changed but the 
graphs are chopped into small chunks. The neighborhood 
information carries both the local and the global properties 
of the graph and maintains the topology types as well. 

 

3. PROBLEM DEFINITIONS 

 
Notation: The following symbols are used throughout the 

paper. Let V(X) be the vertex set of the graph X, and E(X) 

be the edge set of the graph X. An edge {v,w} is often 

denoted as vw. v ~X w denotes the adjacency of the vertices 

v and w in graph X. 
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Topology Types 
The topology type of the network represents the interaction 
between vertices and the connectedness of the vertices. 
Network topology carries significant properties of the 
network. Once the network type is defined, both the 
topology type and the topology properties need to be kept 
for different network operations. In graph sampling, 
topology properties can be used to measure if the data set 
and the sample set are the same or different. Six different 
topology types are summarized in figure 1 and indicate the 
difference in randomness and regularity of the vertices and 
connections. 

From ring lattice network to small-world network and 
Erdos random network, the connections between vertices 
become more random. From Core-periphery networks to 
scale-free networks and cellular networks, the connections 
are more decentralized and more distributed into 
subgroups. When graph sampling is applied, a sampling 
strategy needs to be designed based on different topology 
types. 

 

Fig. 1. Pure Topology Types [Albert, R. et.al. 2002] 

Automorphism 

Automorphism: Given a graph x, a permutation  of V(X) 
is an automorphism of X if for all 𝜇, 𝜈 ∈ 𝑉(𝑋) 

 {𝜇, 𝜈} ∈ 𝐸(𝑋) ⟺ {𝛼(𝜇), 𝛼(𝜈)} ∈ 𝐸(𝑋) (1) 

The set of all automorphisms of a graph X, under the 
operation of composition of functions, forms a subgroup of 
the symmetric group on V(X) called the automorphism 
group of X, and it is denoted Aut(X).  

From the definition of graph automorphism, we can derive 
these facts in automorphism groups, that, let the 
components of X be X1, …, Xk then  

 𝐴𝑢𝑡(𝑋) =  ∏ 𝐴𝑢𝑡(𝑋𝑖)
𝑘
𝑖=1  (2) 

Also, for a simple graph X with edge-complement 𝑋, we 
have       

 𝐴𝑢𝑡(𝑋) = 𝐴𝑢𝑡(𝑋) (3) 

Transitivity: A group X of perms of a set S acts 
transitively or is transitive on S if, for every x, y ∈ S, there 
exists 𝛼 ∈ 𝑋  such that 𝛼(𝑥) = 𝑦  is vertex-transitive, 
Aut(X) acts transitively on V(X), and acts doubly 
transitively on S if, for any two ordered pairs of distinct 
elements (𝑥1, 𝑥2), (𝑦1, 𝑦2) ∈ S*S, there exists 𝛼 ∈ 𝐺 such 
that 𝛼(𝑥1) = 𝑦1 and 𝛼(𝑥2) = 𝑦2 

Graphon: A graphon (graph function) is symmetric 
measurable function W: [0,1]2 -> [0,1]  

Graph Homomorphism: A graph homomorphism from 
H to G is a map 𝜑: 𝑉(𝐻) → 𝑉(𝐺) such that if 𝜇𝜈 ∈ 𝐸(𝐻). 

Graph Homomorphism Density: Let hom(𝐻, 𝐺) be the 
set of all such homomorphisms and let hom(𝐻, 𝐺) =
|hom (𝐻, 𝐺)|. Define homomorphism density as   

 𝑡(𝐻, 𝐺) =
hom (𝐻,𝐺)

|𝑉(𝐺)||𝑉(𝐻)|
 (4) 

This is also the probability that a uniformly random map 
is a homomorphism. 

Edge Density: Let X and Y be sets of vertices in a graph 
G. Let eG(X,Y) be the number of edges between X and Y; 
that is  

 𝑒𝐺(𝑋, 𝑌) = |{(𝑋, 𝑌) ∈ (𝑋 × 𝑌|𝑥𝑦 ∈ 𝐸(𝐺)}|      (5) 

From this, we can define the edge density between X and 
Y to be  

 𝑑𝐺(𝑋, 𝑌) =
𝑒𝐺(𝑋,𝑌)

|𝑋||𝑌|
 (6) 

Deck: Given a graph X, the collection of its vertex 
deleted subgraphs X-v for all v∈V(X) is called the deck of 
X and is denoted by D(X). 

Convergent: The sequence converges to W if t(H, Xn) (or 
t(H, Wn)) converges to t(H, W) for every graph H. 

Existence of Limit: Every convergent sequence of graphs 
or graphons has a limit graphon. 

Equivalence of Convergence: A sequence of graphs or 
graphons is convergent if and only if it is a Cauchy 
sequence with respect to the cut (distance) metric. (A 
Cauchy sequence with respect to metric d is a sequence 
{xi} that satisfies 𝑠𝑢𝑝𝑚≥0𝑑(𝑥𝑛 , 𝑥𝑛+𝑚) → 0 𝑎𝑠 𝑛 → ∞) 

Kronecker Double Cover: Kronecker double cover �̃� of 
a graph 𝑋 has vertices (𝑣,1) and (𝑣,2) for each vertex 𝑣 of 
𝑋, with adjacency 𝑣 ~𝑥  w, if and only if (𝑣, 1)~𝑥(𝑤, 2) 
and (𝑣, 2)~𝑥(𝑤, 1) in �̃� 

On vertex 

 
(𝑣,1)
(𝑣,2)

}  ⟹ 𝑣 (7) 

On edges 
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(𝑣,1)(𝑤,2)
(𝑣,2)(𝑤,1)

}  ⟹ (𝑣, 𝑤) (8) 

Fig. 2. Kronecker Double Cover 

Graph Decomposition and Reconstruction 
Graphs are self-similar. Based on the characteristics of 
graph structure, we want to use a prime graph as the basic 
unit to extract similar patterns. The prime graph is the 
combination of vertices and edges that can carry more 
information and be specific to a particular application.  

Fig. 3. Kronecker Graph 

The prime graph we use to factorize the network is called 
Kronecker graph, as shown in figure 3. The reason we 
choose Kronecker graph as the prime graph is because it is 
the smallest symmetric graph without loops. The 
symmetric property of the Kronecker graph can ensure that 
graphs can expand and shrink to any size through 
Kronecker operations. 

Graph decomposition and reconstruction require that the 
graphs are reconstructible, the homomorphism density can 
be convergent as n goes to infinity and the upper and lower 
bounds of the maximum number of copies of the prime 
graphs can be determined. The following theorems provide 
restrictions to satisfy these criteria. 

Theorem 1. Every graph with at least three vertices is 
reconstructible [11].  

Theorem 2.  Every graph on at least four edges is edge-
reconstructible [11]. 

Theorem 1 and Theorem 2 show us the lower bounds of the 
vertices and the edges for reconstructible graphs. We also 
care about the upper bounds of the vertices and the edges 
so that, after factorization, the size of the subgraphs can be 
loaded into the main memory. We prove the upper bounds 
in lemma 4. 

Other than the upper bounds and lower bounds of the 
vertices and edges, we also want to know the number of 
possible subgraphs, after factorization, so that we can 

ensure the copies of the subgraphs can be loaded into 
memory space. 

Theorem 3. Given a graph G-v in the deck of G, the degree 
of v and the degrees of the neighbors of v in G are 
reconstructible [11]. 

Theorem 4. Suppose G and F are graphs with 

|V(F)|<|V(G)|. Then (|𝑉(𝐺)| − |𝑉(𝐹)|)(𝐺
𝐹
) =

 ∑ (𝐺−𝑣
𝐹
)𝑣∈𝑉(𝐺) , therefore, (𝐺

𝐹
) is reconstructible. [11] 

The total copies of the subgraphs of G choosing F can be 
quantitatively computed. After quantitatively evaluating 
the upper bounds and the lower bounds of the space 
complexity, we want to show how to reconstruct 
subgraphs. The deck of G, denoted by D(G), is formed by 
removing vertices from the graph G. When a vertex is 
removed from the graph, connected edges are also 
removed, if any. D(G) contains subgraphs of G. When we 
factorize the graph with prime graphs, the results are the 
subset of the deck. 

Theorem 5. Let G be a graph without isolated vertices. The 
deck of G is edge-reconstructible, that is D(G) is uniquely 
determined from 𝜀𝐷(𝐺). Therefore, if G is reconstructible, 
then it is also edge-reconstructible [11]. 

Based on theorem 5, we know graph factorization with 
prime graphs are conductible because the deck of G is 
edge-reconstructible so that the subset of the deck of G is 
reconstructible which is the factorization results we are 
looking for. 

Theorem 6. Let A be a n*n symmetric matrix with 
eigenvalues 𝜆1  ≥ 𝜆2  ≥ ⋯  ≥ 𝜆𝑛  and let B be obtained 
from A by removing its ith row and ith column and suppose 
B has eigenvalues 𝜇1  ≥ 𝜇2  ≥ ⋯  ≥ 𝜇𝑛 , then the 
eigenvalues of B interlace those of A, that is, 𝜆𝑖  ≥ 𝜇 ≥
𝜆𝑖+1  [10] 

Based on theorem 6, after reconstruction, the order of the 
eigenvalues remains. 

Given Kronecker graph G1, as shown in figure 4(a), as n 
goes to infinity, the graphon 𝑊𝐺𝑛: [0,1]

2 → [0,1] 
converges to function fig 4(c) as graph properties remain. 

Fig. 4. Kronecker Graph G1 and the limit of WGn. 

 

4. GRAPH SAMPLING THROUGH 

KRONECKER DOUBLE DOVER 

 

The difference between networked data and independent 

data samples is the topology types. Graph sampling needs 

to keep not only the distribution of vertices and edges but 

also the original topology of the data set, which can be 

verified through topology properties. For a data set with 

 

 

 

 

(a) Kronecker Graph 

 

൭
1 1 0
1 1 1
0 1 1

൱ 

 

1 2 3 

 

 

 

 

G1 G1 0 

G1 G1 G1 

0 G1 G1 

   

   

   

𝑀 = ൭
1 1 0
1 1 1
0 1 1

൱ 

 

n 

w 

m 

v 

(n,2) 

(v,1) (w,1) 

(n,1) (m,1) 

(m,2) 

(v,2) (w,2) 
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independent data samples, we only need to think about the 

distribution of the individual data points. 

 
For different topology types, the majority of high degree 
vertices are in the core region and the majority of the low 
degree vertices are in the periphery region, except Erdos-
Renyi random topology which is not real-world graph 
topology. Vertex hierarchy of these topology types is from 
core vertices which have more connections to periphery 
vertices which have fewer connections. The difference in 
the number of vertices in core and periphery categories is 
in an order of magnitude. Also, core vertices and periphery 
vertices have different meanings. Periphery vertices are 
less significant than core vertices. 

Two factors affect the efficiency of the sampling process: 
one is the complexity of similarity comparison, which 
determines if it is possible to conduct the similarity 
comparison, and the other one is the impact of the merging 
methodology on the topology properties of the graph. 
Detailed proof and experiments will be shown in the 
following sections.  

Graph Merging 
For different topology types, we can divide vertices into 
two categories: core group and periphery group. When we 
do graph slicing and merging on different topology types, 
the sample set has to be meaningful and has to keep all of 
the graph properties. This can be illustrated in the 
following.  

As shown in figure 5, we use Kronecker double cover to 
merge edges. In figure 5(a), a1 and a2 have two common 
neighbors which are b1 and b2 so a1 and a2 are similar. b1 
and b2 are in two different graphs, a1b1b2 and a2b1b2. b1b2 
are neighbors in graph a1b1b2 and also in graph a2b1b2, so 
that b1 and b2 are similar. W can give a1, a2, b1, b2 new 
names as (1,1), (1,2), (2,1), (2,2). We can merge (1,1) to 
(1,2) and merge (2,1) to (2,2) and the result is shown in 
figure 5(c).  

 

Fig. 5. Graph Merge through Kronecker Double Cover (a) 
a1 and a2 are similar because in graphs 1b1b2 and a2b1b2, 
they have two vertices, b1 and b2, in common. Vertices b1 
and b2 are similar because they appear together in more 
than one graph (graph a1b1b2 and graph a2b1b2) (b) a1b1 and 
a2b1 are merged. (c) a2b1 and a2b2 are merged. 

Algorithm. Kronecker Double Cover 

Input: G: original Graph, V(G): vertex set of graph G, 

E(G): edge set of graph G, T: Cutoff Threshold, sim: 

Similarity Measure 

Output: G’: sample graph 

(1)Periphery_set  

P={(𝑣, 𝑒)| 𝑣 ∈ 𝑉(𝐺), 𝑒 ∈ 𝐸(𝐺), 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) < 𝑇} 

(2)Core_set C=G – P 

(3)Kronecker set K={ (𝑣, 𝑤1, 𝑤2)| 𝑣 ∈ 𝑉(𝑃), 𝑤1 ∈

𝑉(𝑃), 𝑤2 ∈ 𝑉(𝑃), (𝑣, 𝑤1) ∈ 𝐸(𝑃), (𝑣, 𝑤2) ∈ 𝐸(𝑃)} 

(4)Kronecker similar groups S = 

{(𝑐𝑜𝑢𝑛𝑡, 𝑤1, 𝑤2)|𝑐𝑜𝑢𝑛𝑡 =

𝑙𝑒𝑛([𝑣𝑠]) 𝑓𝑜𝑟 ([𝑣𝑠], 𝑤1 , 𝑤2) 𝑖𝑛 𝐾} 

(5)For sim = S.count.min( ) to S.count.max( ) 

(5.1)    𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑠𝑒𝑡 𝐹 = {(𝑣, 𝑤1 , 𝑤2)|(𝑣, 𝑤1, 𝑤2) ∈

𝐾, 𝑐𝑜𝑢𝑛𝑡(𝑤1, 𝑤2) ≥ 𝑠𝑖𝑚} 

(5.2)    Merged_set  𝑀 = {(𝑣, 𝑤)|𝑖𝑓 ([𝑣𝑝], 𝑤𝑖 , 𝑤𝑗) ∈

𝐹, 𝑣 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑠[𝑣𝑝], w replaces 𝑤𝑖  𝑎𝑛𝑑 𝑤𝑗}  

(5.3)     V’ ={𝑣|𝑣 ∈ 𝑉(𝑀 + 𝐶)} 

(5.4)     E’ ={𝑒|𝑒 ∈ 𝐸(𝑀 + 𝐶)} 

(5.5)     V = V’ 

(5.6)     E = E’ 

On line 1, we generate Periphery set P by selecting all of 
the vertices with degrees less than T and also adding the 
edges between these vertices. In the Core set, C is the rest 
of the vertices and edges in the graph. On line 3, we 
generate Kronecker graphs K by choosing any two 
neighbors (w1 and w2) of a vertex v. On line 3, we count 
the graph frequency of the Kronecker graphs with two 
neighbors (w1 and w2) in common and save results to the 
frequent set F(v, w1, w2). On line 4, we create Kronecker 
similar groups based on the frequency of the isomorphic 
graphs. This is based on the assumption that the vertices 
and edges in periphery sets are end vertices and end edges. 
If they are by chance connected, those connections are 
random. We may not exactly know which vertices belong 
to the periphery set, but vertices with low degrees and less 
isomorphic graphs are highly likely in the periphery set. 
When we merge vertices and edges by choosing the 
frequency of the isomorphic graphs from low to higher up, 
we can check changes in the graph properties and topology 
properties in order to ensure the change is within a small 
range or can converge to a particular value. A merged set 
is a list of dictionaries to map vertices to new names. On 
line 5.3 through line 5.6, we update Kronecker graph set, 
vertex set, and edge set with new names in the merge set. 

Based on Theorem 1, vertices need to have at least two 
neighbors to become constructible, otherwise, we call them 
residuals. Some vertices are constructible but the 
frequency of the isomorphic groups they can form is less 
than the similarity threshold. After merging, some vertices 
reduce the number of degrees and become residuals. These 
vertices are not removed from the graph, because we don’t 
want to cut any connections in the graph and but, since 

 

 

 

 

 

b1 b2 

a1 a2 a3 a4 

b3 b1(2,1) b2(2,2) b3 

a1(1,1) a2(1,2) a3 a4 

b2 b3 

a2 a3 a4 
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these vertices have low degrees and less connections, they 
are not significant. 

The Complexity of Kronecker Double Cover 
Kronecker graph can also be presented in matrix format. 
Kronecker product and Kronecker double cover can be 
conducted through matrix operations, such as matrix 
multiplication and matrix factorization.  

Lemma 1. The join of Kronecker graphs has a limited 
graphon. 

Proof. Given a Kronecker graph, we can generate a 
sequence of graphs through Kronecker graph join. Based 
on the Existence of the Limit Theorem every convergent 
sequence of graphs or graphons has a limit graphon. 
Therefore, the sequence of graphs generated through 
Kronecker join has a limit graphon. ∎ 

Lemma 2. Kronecker graph properties hold during 
projection.  

Proof. Given a sequence of Kronecker graphs {G| G = Gi , 
i = 1, … , n}, the mathematical form of the sequence of 
graphs can be written as equation (9) below: 

∏𝐺𝑖 =

𝑛

𝑖=1

൭
1 1 0
1 1 1
0 1 1

൱ ∗ …∗ ൭
1 1 0
1 1 1
0 1 1

൱ =  ൭
1 1 0
1 1 1
0 1 1

൱ 

We illustrated this process in figure 6 (b). We can conclude 
that if any graph can be decomposed into a sequence of 
Kronecker graphs, the Kronecker properties hold during 
projection. ∎ 

Lemma 3. Kronecker graph can be used to generate any 
binary graph with no self-loops and multiple edges. 

 

Fig. 6. Kronecker Graph Join and Factorization 

Proof: 

Given a Kronecker graph, we can construct any binary 
graphs without self-loops and multiple edges.  

Kronecker graphs can be represented with matrix M 

 𝑀 = ൭
1 1 0
1 1 1
0 1 1

൱            (10) 

Now, if we multiply two Kronecker graphs, we can have 

 𝑁 = 𝑀 ∗ 𝑀 = ൭
1 1 0
1 1 1
0 1 1

൱ ∗ ൭
1 1 0
1 1 1
0 1 1

൱ =

 

(

 
 
 
 
 
 
൭
1 1 0
1 1 1
0 1 1

൱ ൭
1 1 0
1 1 1
0 1 1

൱ ൭
0 0 0
0 0 0
0 0 0

൱

൭
1 1 0
1 1 1
0 1 1

൱ ൭
1 1 0
1 1 1
0 1 1

൱ ൭
1 1 0
1 1 1
0 1 1

൱

൭
0 0 0
0 0 0
0 0 0

൱ ൭
1 1 0
1 1 1
0 1 1

൱ ൭
1 1 0
1 1 1
0 1 1

൱
)

 
 
 
 
 
 

  

In this way, as shown in figure 6 (a), we generate-graph N 
from graph M. ∎ 

Homomorphism density can be used to estimate the space 
complexity of a sequence of graphs. When we decompose 
a graph into a set of Kronecker graphs, the space 
complexity can be estimated with lemma 4, as shown 

below. The complexity of ( 𝐺
𝑘1,2
)  are O(n3) and the 

complexity is O(n3) so that the homomorphism density of 
the Kronecker graphs is O(1). 

Lemma 4. (Homomorphism Density of Kronecker 
graph) 

Proof: Given a Kronecker graph G1 = k1,2, the number of 
copies of Kronecker graphs hom(k1,2, G) is equation (11): 

 hom(𝑘1,2, 𝐺) = (
2
1
) ∗ (1

1
) ∗ ( 𝐺

𝑘1,2
) = 2 ∗ ( 𝐺

𝑘1,2
)  

The homomorphism density t(k1,2, G) is equation (12): 

 𝑡(𝑘1,2, 𝐺) =
hom (𝑘1,2,𝐺)

|𝑉(𝐺)||𝑉(𝑘1,2)|
=
2∗( 𝐺

𝑘1,2
)

|𝑉(𝐺)|3
  

In which k1,2 is a bipartite graph with one vertex on one 
side and two vertices on the other side. This lemma can also 

 

5. EXPERIMENTS 

 

We used the Email-EU communication network data set to 

evaluate the performance of Kronecker double cover 

sampling methodology and compare it with EN-i [1] – an 

edge sampling methodology since Kronecker double cover 

is an edge sampling method as well. The measurements we 

choose to evaluate the quality of the sample sets are degree 

rank, degree frequency, and eigenvalue plot because 

Kronecker double cover operation merges edges so that the 

degree distribution can be potentially affected. 

 
The first step is to split the original data set into two 
subgraphs – core and periphery, based on degree 
distribution. Since we only need to merge edges in 
periphery subgraphs. Vertex degrees belong to exponential 
distribution so that there is a clear gap between high degree 
vertices and low degree vertices. We generate sample sets 
with three different cutoffs which are mean - the average 

൭

𝑛11 ⋯ 𝑛1𝑖
⋮ ⋱ ⋮
𝑛𝑖1 ⋯ 𝑛𝑖𝑖

൱ = ൭
𝑀 𝑀 0
𝑀 𝑀 𝑀
0 𝑀 𝑀

൱ = ൭
1 1 0
1 1 1
0 1 1

൱ ∗ 𝑀 = 𝑀 ∗𝑀 = 𝑀 

(a) Kronecker Graph Factorization 

൭
1 1 0
1 1 1
0 1 1

൱ ∗ ൭
1 1 0
1 1 1
0 1 1

൱ ∗ …∗ ൭
1 1 0
1 1 1
0 1 1

൱ = ൭
1 1 0
1 1 1
0 1 1

൱

𝑛

=  ൭
1 1 0
1 1 1
0 1 1

൱ 

(b) Kronecker Graph Multiplication 

be applied to bipartite graphs K1,n.  
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of the degrees, mean+std - the average of the degrees plus 
standard deviation, and mean+2*std - the average of the 
degrees plus 2 times the standard deviation. Since the 
number of degrees follows an exponential distribution, the 
standard deviation is normally greater than the mean of the 
number of degrees so we cannot use the average of degrees 
minutes standard deviation as the threshold for core and 
periphery separation.  

The second step is to pick a Kronecker graph similarity 
threshold to find similar graphs. For experimental 
purposes, we choose three similarity thresholds which are 
2, 3, and 4. When the similarity threshold increases, fewer 
edges can be merged but the graph size shrinks faster. 

In figure 7, we group subgraphs based on similar 
Kronecker graph counts visualized the similar Kronecker 
graph count from low to higher up, and also visualized 
maximum degree, minimum degree, and an average degree 
in each group. Figure 7 (a)(b)(c) shows that similar 
Kronecker graph counts and vertex degrees are 
independent measurements. When similar Kronecker 
graph frequency increases in the reach group, the 
maximum, minimum, and average degrees in each group 
are random. During Kronecker graph double cover 
operation, the number of edges is reduced but it does not 
directly affect the degree distribution of the graph. 

We merge Kronecker graphs from low-frequency groups 
to higher up, based on Kronecker graph similarity. This 
process converges within several iterations, as shown in 
figure 8. For the sample set with cutoff equal to mean, we 
have groups with similarity frequency from 2 to 339 and 
converged at 70. For the sample set with a cutoff equal to 
mean+std, we have groups with similarity frequency from 
2 to 1874 and converge at 50. For the sample set with a 
cutoff equal to mean+2*std, we have groups with 
similarity frequency from 2 to 3461 and converge at 300. 
When cutoffs increase, similarity frequency converges 
faster. For cutoff equal to mean+2*std, some core vertices 
are included in periphery subgraphs which makes it 
converge slower. 

During Kronecker similar graph merging, no connections 
are cut. When similar vertices and edges are merged, their 
neighbors are merged as well. After merging similar 
Kronecker graphs in periphery subgraphs, redundant 
connections between periphery vertices are merged. Based 
on topology types, as shown in figure 1, other than Erdos-
random graphs, random connections between periphery 
vertices can be ignored. In order to maintain the 
connectedness of the graph, we merge them. 

 

Fig. 7. Degree Property of Different Sample Sets 

 

 

(a) Sample Set with Cutoff = mean 

 

(b) Sample Set with Cutoff = mean + std 

 

(c) Sample Set with Cutoff = mean+2*std 
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Fig. 8. Edge and Vertex Sizes During Graph Merging 

For degree rank and degree frequency, Kronecker double 
cover sample sets have higher Pearson correlation 
coefficients than ES-i sample sets with the same number of 
edges, as shown in figures 9(a)(b), 10(a)(b), 11(a)(b), 
which means that edge merging performs better than 
random edge sampling. Based on graph topology, degrees 
are not randomly distributed. When we equally select 
random edges from both core and periphery to form sample 
sets, degree property is changed. When cutoffs increase 
from mean to mean+2*std, the graph sizes shrink faster 
and there are less vertices to compare. For eigenvalue plot, 
as shown in figures 9(c),10(c), and 11(c), ES-i sample sets 
perform better, because, for the vertices in seed edge set, 
ES-i sampling method adds the rest of their connections to 
the sample set, that can better maintain the connectedness 
of the vertices in the sample set. 

 

Fig. 9. Pearson Correlation Coefficients Between Original 
Set and Sample Sets Generated with Splitting Degree 
equal to mean 

 

Fig. 10. Pearson Correlation Coefficients Between 
Original Set and Sample Sets Generated with Splitting 
Degree equal to mean+std 

 

(a) Mean 

 

(b) mean+std 

 

(c) mean+2*std 
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Fig. 11. Pearson Correlation Coefficients Between 
Original Set and Sample Sets Generated with Splitting 
Degree equal to mean+2*std 

For Kronecker double cover sampling, Pearson correlation 
coefficients for degree ranks and degree frequencies are 
between 95% and 100%, as shown in figures 9(a)(b) and 
10(a)(b), and Pearson correlation coefficients for 
eigenvalue plot are between 90% and 100% when cutoffs 
are set to mean and mean+std, as shown in figure 9(c) and 
10(c). When the cutoff is set to mean+2*std, some core 
vertices are included in periphery subgraphs which causes 
merging between core and periphery vertices and make the 
connectedness of sample sets different from the original. 
The eigenvalue plot decreases from 95% to 85, as shown 
in figure 11(c). Degree ranks go up and down between 88% 
and 100%, as shown in figure 11(b), but degree frequencies 
are not affected. 

The above experimental results also confirm the existence 
of the topology types and present the graph properties for 
different topology types. 

 

Fig. 12. Clustering Conductance on Different Email Eu 
Data Sets 

We evaluate the sample quality on sample sets generated 
with a cutoff equal to the mean. As shown in figure 12, we 
visualized the clustering accuracy of Kronecker sample 

sets, ES-i sample sets, and the original data set. The number 
of edges started converging when Kronecker similarity 
frequency is around 50, as shown in figure 8(a). When the 
Kronecker similarity frequency is below the converging 
point, Kronecker sample sets have better accuracy than the 
original and ES-I sample sets with the same number of 
edges. When the Kronecker similarity frequency is beyond 
a converging point, ES-i sample sets have better accuracy 
than other sets. However, the degree ranks, degree 
frequencies, and eigenvalue plots decrease, when the 
Kronecker similarity frequency increases. In other words, 
when Kronecker similarity frequency is below the 
converging point, the sample quality increases when 
Kronecker groups are merged from low frequency to 
higher up. When Kronecker similarity frequency is beyond 
the converging point, the connectedness and graph 
properties are changed. 

 

6. CONCLUSION 

 
We present a new network sampling methodology based 

on Kronecker graph double cover. We theoretically proved 

that the network sampling through graph decomposition 

and reconstruction is feasible in terms of space complexity 

and time complexity, and can reserve graph properties and 

graph topology. To keep the connectedness of the network, 

graph sampling is through merging similar vertices and 

edges. Real-world graphs barely happen to be Erdos-

random graphs. The topology types normally have a 

hierarchical structure.  Kronecker double cover operation 

is different from degree reduction in that it can be used to 

merge vertices and edges but the selected vertices vary on 

the number of degrees.  

In order to preserve the topology types of the graphs, we 
evaluate several different ways to separate core vertices 
and periphery vertices. We compare the degree rank and 
degree frequency between the original data set and the 
sample sets with the Pearson correlation coefficient. 
Sample sets and original data sets are similar, and the graph 
properties and graph topologies are preserved. We also 
compared the quality of the original data set and the sample 
set through graph clustering. After sample selection, we 
can efficiently improve the quality of the communities and 
shrink the size of the communities as well.  

In the future, we are interested in better similarity 
measurements to catch the characteristics of the graph 
properties, especially to simulate the evolution of the 
graphs. 
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