

The use of Flow Features in Lossy Network Traffic Compression for

Network Intrusion Detection Applications

Sidney SMITH

 Computational Information Sciences Directorate, U.S. Army Research Laboratory

Aberdeen Proving Ground, MD 21005, U.S.A

and

Robert J. HAMMELL II

Department of Computer and Information Sciences, Towson University

Towson, MD 21252, U.S.A

ABSTRACT

In distributed network intrusion detection applications, it is

necessary to transmit data from the remote sensors to the
central analysis systems (CAS). Transmitting all the data

captured by the sensor would place an unacceptable demand on

the bandwidth available to the site. Most applications address

this problem by sending only alerts or summaries; however,

these alone do not always provide the analyst with enough

information to truly understand what is happening on the

network. Lossless compression techniques alone are not

sufficient to address the bandwidth demand; therefore, some

form of lossy compression must be employed. Working on the

theory that a network flow that is malicious will manifest this

maliciousness early, we explore the impact of compressing

network traffic by stopping the transmission of packets in a

flow once a given threshold either in number of packets or

number of bytes have been transmitted.

Keywords: compression, network intrusion detection, flow,

packet count, byte count

1. INTRODUCTION

Distributed Network Intrusion Detection Systems (NIDS) allow

a relatively small number of analysts to monitor a much larger

number of sites; however, NIDS require information to be

transmitted from the remote sensor to the central analysis

system (CAS) [1] as pictured in Fig. 1. This transmission

typically uses the same channels that the site uses to conduct

business. It is important to reduce the amount of information

transmitted back to the CAS to minimize the impact that the

NIDS has on daily operations as much as practical.

Smith and Hammell [1] proposed creating a lossy compression

tool using anomaly detection techniques to rate each session

and a modification of the Kelly criterion [2] to select how much

traffic from each session to return as seen in Fig. 2.

The contribution of this research is to explore one method to

compress network traffic without unacceptably impacting the

ability of the NIDS to detect and analyze malicious activity. It

considers the hypothesis that malicious network flows will

manifest their maliciousness early. This research examines the

implications of only transmitting the packets in a flow up to a

threshold in either packets or bytes by comparing the results of

a popular network intrusion detection tool before and after

compression.

The remainder of this paper is organized into the following

sections: Section 2 provides background, Section 3 outlines the

approach chosen to address this problem, Section 4 presents our

results, and Section 5 provides a conclusion and discussion of

future work.

Figure 1. Distributed network intrusion detection

Figure 2. Kelly compressor

2. BACKGROUND

One popular strategy for implementing a distributed NIDS is to

do all of the intrusion detection on the sensor and send only

alerts or logs to the CAS. [3] [4] A second strategy might be to

use lossless compression to reduce the size of the data returned

40 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 2 - YEAR 2019 ISSN: 1690-4524

to the CAS. A third strategy is to implement some form of lossy

compression algorithm to send back relevant portions of traffic.

There are three problems with the first strategy. The first is that

it has the potential to overburden the sensor's central processing

unit (CPU) and introduce packet loss. Smith et al. discovered

that the impact of packet loss can sometimes be quite severe for

even small rates of packet loss. [5] The second problem is that

the alerts by themselves often do not contain enough

information to determine whether the attack was successful.

The third problem is that these systems are most often

implemented with signature-based intrusion detection engines.

Signature-based systems may be tuned to produce few false

positives; however, they are ineffective at detecting zero-day

and advanced persistent threats. [6]

The problem with the second strategy is that lossless

compression alone simply is not capable of reducing the amount

of traffic enough. Using GNU Zip to compress the 2009 Cyber

Defense Exercise data set provides a compression ratio of 2:1.

[7] Compression ratios of better than 10:1 are required to

minimize the impact of NIDS on day-to-day operations.

The third strategy is to use lossy compression to provide a

solution. Network traffic may be considered to be composed of

sessions that span spectrums from known to unknown and

malicious to benign as illustrated in Figure 3. Quadrant III, the

known malicious quadrant, is the domain of intrusion

prevention systems as described by Ierace, Urrautia, and

Bassett [8]. This research is most interested in quadrant II, the

unknown malicious quadrant, because that is the quadrant

where evidence of zero-day and advanced persistent threat

attacks will be found. In 2004, Kerry Long described the

Interrogator Intrusion Detection System Architecture [9]. In this

architecture, remotely deployed sensors, known as Gators,

collect network traffic and transmit a subset of the traffic to the

analysis level. Interrogator employs “a dynamic network traffic

selection algorithm called Snapper'”. [9]. Long and Morgan

describe how they used data mining to discover known benign

traffic that they excluded from the data transmitted back to the

analysis servers [10]. Smith, Hammell, and Neyens compressed

network traffic by removing packets based upon their entropy.

[7] Smith and Hammell also truncated packets. [11]

Figure 3. Network traffic composition

3. APPROACH

A transmission control protocol (TCP) session is identified by

the internet protocol (IP) address and port of the client and the

IP address and port of the server. Each TCP/IP packet contains

a source IP address and port and a destination IP address and

port. The source and destination change depending on whether

the packet was sent by the client to the server or the server to

the client. In this paper, a session is considered to be

bidirectional and a flow is considered to be unidirectional. This

research focuses on flows because it is simple to match source

and destination IP addresses and ports. We leave paring

opposite flows into a single session for future work.

We began by constructing a tool to read a network capture file

in libpcap [12] format and then keep track of the number of

packets and bytes in each TCP flow. The flow engine would

then return these values as the score for that packet. Packets that

scored above the threshold would be dropped. When the flow

compression tool completed it would output the number of

packets and number of bytes read and written. Snort [3] was

then used to analyze the compressed traffic. Upon completion,

we extracted the number of alerts detected from the Snort

report. We employed the sequence [13] tool to set the

thresholds for each run which consisted of several iterations

using different thresholds. When the run was completed, we

plotted the amount of data transmitted as a percentage of the

original, and the alert loss rate (ALR) against each threshold.

Flow Compression Tool

In order to be useful in our compression application the

algorithm will need to be implemented as efficiently as

possible; therefore, we chose to implement this flow

compression tool in C++. A Flow class was implemented which

stores the source and destination IP addresses and ports along

with the number of packets and bytes observed in the flow. We

chose to store these Flow objects in the map container from the

standard library. The Flows class contains the map data

structure encapsulating that implementation detail from the

user. We created a FlowEngine child class of the

AnomalyEngine super class which was created in a previous

work [14].

As each packet is read from the capture file, it is scored by the

FlowEngine. The FlowEngine adds the packet to the Flows

object. If this is the first time we have seen this combination of

IP addresses and ports, then a new flow is created; otherwise,

we increment the packet and byte counters of the existing flow.

The flow engine will then return either the current packet or

byte count.

Data Sets

In the following section we provide a brief summary of the

various data sets that were used in our experiment. It is

necessary to abbreviate these data sets. This abbreviation will

appear in parenthesis in the text and afterwards appear in tables

and captions. Table 1 provides a summary of the duration and

packet count for each of these data sets.

DARPA Data Sets: As part of their evaluation of intrusion

detection systems, Lippman et al. created a data set of synthetic

network traffic [15]. We used the testing data from Friday of

week 2 (DTE98W2D6). We selected this day because it

contains the largest number of alerts in the 2 weeks of testing

data.

Cyber Defense Exercise 2009: In 2009 the National

Security Agency/Central Security Service (NSA/CSS)

conducted an exercise pitting teams from the military

academies of the United States and Canada against teams of

professional network specialists to see who best defended their

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 2 - YEAR 2019 41

network. Data from this exercise was captured and used by

Sangster et al. in his efforts to generate labeled data sets [16].

Two network traffic sensors were employed in the exercise:

gator-usama010 and gator-usama020. We used the pcapcat [17]

program to consolidate the individual hours of for network

traffic collected by each sensor into files in Libpcap format. In

these trials we used the data captured from gator-usama020

(CDX09U020).

Mid-Atlantic Collegiate Cyber Defense Competition:

Based upon the pattern of the Cyber Defense Exercises, a group

of industry academics created the collegiate cyber defense

competitions [18]. We used the network capture data for the

Mid-Atlantic Collegiate Cyber Defense Competitions from

2010 (MACCDC10) which is available from:

https://www.netresec.com/?page=MACCDC.

Information Security Centre of Excellence Intrusion

Detection System 2012: The University of New Brunswick’s

Canadian Institute for Cybersecurity created the Information

Security Centre of Excellence (ISCX) Intrusion Detection

System (IDS) 2012 data set (ISCXIDS12) [19]. This synthetic

labeled data set contains full network capture files. We used the

data from Monday June 15, 2010. More information about this

data set may be found at http://ww.unb.ca/cic/datasets/ids.html.

Canadian Institute for Cybersecurity Intrusion

Detection System: The University of New Brunswick’s

Canadian Institute for Cybersecurity (CIC) created the CIC

Intrusion Detection System (IDS) 2017 data set (CICIDS17)

[19]. This synthetic labeled data set contains full network

capture files. We used the data from Wednesday July 5, 2017.

More information about this data set may be found at

http://ww.unb.ca/cic/datasets/ids.html.

Real World: We collected real world network traffic from

the top level architecture of a laboratory on the Defense

Research Engineering Network in Dec 2016 (RW2106).

Table 1. Data sets

Name Seconds Packets

D98TEW2D6 90,432 2,177,646

CDX09U020 345,600 42,293,657

MACCDC10 275,666 264,973,151

ISCXIDS12 86,400 34,983,042

CICIDS17 30,458 13,788,878

RW2016 38,337 213,803,423

Rule Sets

The more rules that are tested by Snort, the more computing

resources Snort requires to complete its analysis. These

resource requirements may climb to the point where Snort is

unable to keep up with the network traffic causing packet loss.

Therefore, the default rule sets have most of the rules

commented out. In order to analyze older data sets, it is

necessary to tailor the rule set to ensure that rules appropriate

for the time period are active.

Circa2000: The registered Snort rules downloaded from

http://www.snort.org in Aug 2013 with rules activated to

detected malicious activity from the year 2000.

Circa2009: The registered Snort rules from Aug 2013

with rules activated to detect malicious activity from 2009.

RegAug2013: The registered Snort rules from Aug 2013.

RegSep2018: The registered Snort rules from Sep 2018.

4. RESULTS

We conducted several trials where multiple runs of several

iterations of the flow compressor were used to compress the

data sets which were then given to Snort for analysis. A script

was written to conduct these runs employing the sequence

program [13] to define the threshold values. In Tab. 2 we have

listed the trial number, data set abbreviation, rule set

abbreviation, and the figures where the results are displayed.

For each trial we plot the percentage of the initial size of the

data set as the y value and the threshold as the x value as

circles. On the same graph we plot the ALR, as the y value and

the threshold as the x value in triangles. A table showing the

threshold, compression and ALR is provided for each run.

These table are used to illustrate the two particular value of

interest. The first is the point of most compression with zero

ALR. The second is the point of most compression with less

than 1% ALR.

Table 2. Experiment Characteristics

Trial Data set Rule set Figures

1 DTE98W2D6 C2000 4 and 5

2 CDX09u020 C2009 6 and 7

3 MACCDC10 RegAug13 8 and 9

4 ISCXIDS12 RegAug13 10 and 11

5 CICIDS17 RegAug18 12 and 13

6 RW2016 RegAug18 14 and 15

Trial 1

The first trial used the D98TEW2D6 data set and the Circa2000

rule set. There were 2 runs where the data set was compressed

with a packet threshold. The first used a geometric sequence

Eq. (1) where n = 1 to 20 and the second used a square

sequence Eq. (2) where n = 2 to 32. Figure 4 and Table 3

display the most interesting combined results. Thresholds over

2048 have been omitted because they result in zero alert loss.

The data point for threshold 784 was added from the second run

because it fills in the gap between 1024 and 512 showing 0.1%

packet loss.

𝑠𝑛 = 2𝑛 (1)

𝑠𝑛 = 𝑛2 (2)

42 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 2 - YEAR 2019 ISSN: 1690-4524

https://www.netresec.com/?page=MACCDC
http://ww.unb.ca/cic/datasets/ids.html
http://ww.unb.ca/cic/datasets/ids.html
http://www.snort.org/

Figure 4. Trial 1 packet threshold

Table 3. Trial 1 packet threshold

Threshold Compression ALR

2048 88.00% 0.00%

1024 85.00% 0.00%

784 83.00% 0.01%

512 79.00% 0.01%

256 73.00% 0.03%

128 70.00% 0.04%

64 67.00% 0.05%

32 64.00% 0.08%

16 58.00% 0.13%

8 48.00% 0.33%

4 33.00% 1.16%

2 18.00% 2.25%

There were 2 runs where the data was compressed with a byte

threshold. The first used a geometric Eq. (1) sequence where

n = 1 to 20 and the second used a cube sequence Eq. (3) where

n = 3 to 41. Figure 5 and Table 4 display the most interesting

combined results. Thresholds over 131072 were excluded

because they also generated zero alert loss. The threshold 343

was added to fill in the gap between thresholds 512 and 256.

Thresholds under 128 were excluded because their ALR was

over 1%.

𝑠𝑛 = 𝑛3 (3)

Figure 5. Trial 1 byte threshold

Table 4. Trial 1 byte threshold

Threshold Compression ALR

131072 74.00% 0.00%

65536 69.00% 0.01%

32768 64.00% 0.03%

16384 58.00% 0.05%

8192 50.00% 0.08%

4096 41.00% 0.11%

2048 35.00% 0.14%

1024 26.00% 0.29%

512 23.00% 0.58%

343 20.00% 1.27%

256 19.00% 1.29%

128 19.00% 2.25%

Trial 2

The second trial used the CDX09u020 and the Circa2009 rule

set. There were 2 runs where the data set was compressed with

a packet threshold. The first used a geometric sequence Eq. (1)

where n = 1 to 20 and the second used an arithmetic sequence

Eq. (4) where a = 2, d = 2, and n = 2 to 61. Figure 6 and Table

5 display the most interesting combined results. Thresholds

over 128 were excluded because they have an ALR of zero. The

threshold of 94 and 92 was added from the second run to fill in

the gap between the thresholds of 128 and 64.

𝑠𝑛 = 𝑎 + 𝑑(𝑛 − 1) (4)

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 2 - YEAR 2019 43

Figure 6. Trial 2 packet threshold

Table 5. Trial 2 packet threshold

Threshold Compression ALR

128 29.14% 0.00%

94 28.00% 0.00%

92 28.00% 0.03%

64 27.74% 0.03%

32 26.30% 0.29%

16 24.90% 0.40%

8 22.84% 0.58%

4 20.25% 14.65%

There were 2 runs where the data was compressed with a byte

threshold. The first used a geometric sequence Eq. (1) where

n = 1 to 20 and the second used a cube sequence Eq. (5) where

n = 19 to 51. Figure 7 and Table 6 display the most interesting

combined results. Thresholds over 131072 were excluded

because their ALR is zero. The threshold 110592 was added to

fill in the gap between 131072 and 65536 and the threshold

6859 was added to fill in the gap between 8192 and 4096.

𝑠𝑛 = 𝑛3 (5)

Figure 7. Trial 2 byte threshold

Table 6. Trial 2 byte threshold

Threshold Compression ALR

131072 28.00% 0.00%

110592 28.00% 0.00%

65536 27.00% 0.03%

32768 26.00% 0.03%

16384 25.00% 0.09%

8192 24.00% 0.40%

6859 23.00% 0.44%

4096 22.00% 1.75%

Trial 3

The third trial used the MACCDC10 data set and the RegAug13

rules set. There was one run where the data set was compressed

with a packet threshold. This trial used a geometric sequence

Eq. (1) where n = 1 to 20. Figure 8 and Table 7 display the

most interesting results. Thresholds over 64 were excluded

because their ALR was zero.

There was one run where the data was compressed with a byte

threshold. This trial used a geometric sequence Eq. (1) where

n = 1 to 20. Figure 9 and Table 8 display the most interesting

results. Thresholds over 65536 were excluded because their

ALR was zero. Although there is a large gap between threshold

66536, which is the last threshold with zero ALR, and threshold

1024, which is the first threshold with an ALR greater than 1%,

a second run was not conducted because the size of the file was

reduced only 1% at a threshold of 1024.

Figure 8. Trial 3 packet threshold

Table 7. Trial 3 packet threshold

Threshold Compression ALR

64 99.99% 0.00%

32 99.00% 0.00%

16 99.00% 0.04%

8 99.00% 0.20%

4 99.00% 0.71%

2 99.00% 10.71%

44 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 2 - YEAR 2019 ISSN: 1690-4524

Figure 9. Trial 3 byte threshold

Table 8. Trial 3 byte threshold

Threshold Compression ALR

65536 99.00% 0.00%

32768 99.00% 0.00%

16384 99.00% 0.03%

8192 99.00% 0.07%

4096 99.00% 0.11%

2048 99.00% 0.21%

1024 99.00% 3.67%

512 99.00$ 10.22%

Trial 4

The fourth trial used the data from June 15th of the ISCXIDS12

data set and the RegAug13 rules set. There were 2 runs where

the data was compressed with a packet threshold. The first used

a geometric sequence Eq. (1) where n = 1 to 20 and the second

used a cube sequence Eq. (5) where n = 2 to 25. Figure 10 and

Table 9 display the most interesting combined results.

Thresholds over 16384 were excluded because their ALR was

zero. Thresholds less than 4096 were excluded because their

ALR was greater than 1%. The threshold 12167 was added

from the second run to fill in the gap between 16394 and 8192,

and the threshold 5832 was added to fill in the gap between

8192 and 4096.

There was one run where the data was compressed with a byte

threshold. This run used a geometric sequence Eq. (1) where

n = 1 to 20. Figure 11 and Table 10 display the most interesting

results. Thresholds over 33554432 were excluded because their

ALR is zero. Thresholds under 4194304 were excluded because

their ALR were over 1%.

Figure 10. Trial 4 packet threshold

Table 9. Trial 4 packet threshold

Threshold Compression ALR

16384 95.00% 0.00%

12167 95.00% 0.00%

8192 95.00% 0.02%

5832 94.00% 0.04%

4096 93.00% 23.43%

Figure 11. Trial 4 byte threshold

Table 10. Trial 4 byte threshold

Threshold Compression ALR

33554432 96.00% 0.00%

16777216 95.00% 0.02%

8388608 94.00% 0.10%

4194304 90.00% 42.95%

Trial 5

The fifth trial used data from day 3 of the CICIDS17 data set

and the ReAug18 rules. There were 2 runs where the data set

was compressed with a packet threshold. The first used a

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 2 - YEAR 2019 45

geometric sequence Eq. (1) where n = 1 to 20 and the second

used an arithmetic sequence Eq. (4) where a = 8, d = 1, and

n = 1 to 24. Figure 12 and Table 11 displays the most

interesting combined results. Thresholds over 128 were

excluded because their ALR was zero. Thresholds 31 and 20

were added to fill in the gap between 32 and 16.

Figure 12. Trial 5 packet threshold

Table 11. Trial 5 packet threshold

Threshold Compression ALR

128 31.00% 0.00%

64 28.00% 0.00%

32 26.00% 0.00%

31 25.00% 0.09%

20 24.00% 0.94%

16 23.00% 1.51%

8 20.00% 3.03%

There were 2 runs where the data was compressed with a byte

threshold. The first used a geometric sequence Eq. (1) where

n = 1 to 20 and the second used a cube sequence Eq. (5) where

n = 16 to 25. Figure 13 and Table 12 display the most

interesting combined results. Thresholds over 16384 were

excluded because their ALR is zero. Threshold 9261 and 5831

were added to fill in the gaps.

Figure 13. Trial 5 byte threshold

Table 12. Trial 5 byte threshold

Threshold Compression ALR

16384 23.00% 0.00%

9261 17.00% 0.00%

8192 14.00% 0.09%

5831 9.00% 0.75%

4096 7.00% 1.51%

2048 5.00% 5.30%

Trial 6

The sixth trial used the RW2016 data set and the RegAug2018

rule set. There was one run where the data set was compressed

with a packet threshold. This run used a geometric sequence

Eq. (1) where n = 1 to 20. Figure 14 and Table 13 display the

most interesting results. Thresholds over 32 were excluded

because their ALR is zero.

There was one run where the data was compressed with a byte

threshold. This run used a geometric sequence Eq. (1) where

n = 1 to 20. Figure 15 and Table 14 display the most interesting

results. Thresholds over 32768 were excluded because their

ALR is zero. Thresholds from 1024 to 2 were excluded because

their compression and ALR is identical that or thresholds 1024

and 2.

Figure 14. Trial 6 packet threshold

Table 13. Trial 6 packet threshold

Threshold Compression ALR

32 71.00% 0.00%

16 70.00% 0.00%

8 69.00% 0.64%

4 68.00% 0.96%

2 68.00% 0.96%

46 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 2 - YEAR 2019 ISSN: 1690-4524

Figure 15. Trial 6 byte threshold

Table 14. Trial 6 byte threshold

Threshold Compression ALR

32768 71.00% 0.00%

16384 70.00% 0.64%

8192 69.00% 0.64%

2048 68.00% 0.64%

1024 67.00% 0.96%

2 67.00% 0.96%

Summary

Since the goal is to compress the network traffic as much as

possible without losing the ability to detect and investigate

malicious activity, Table 15 displays the highest rate of

compression for each experiment with no alert loss and the

highest rate of compression with less and 1% alert loss.

Table 15. Experiment Results

Trial Threshold Value Size ALR

1 Packets 784 85% 0.00%

1 Packets 9 50% 0.21%

1 Bytes 121,072 74% 0.00%

1 Bytes 512 23% 0.58%

2 Packets 94 28% 0.00%

2 Packets 8 23% 0.58%

2 Bytes 111,592 28% 0.00%

2 Bytes 6,859 23% 0.44%

3 Packets 32 99% 0.00%

3 Packets 4 99% 0.71%

3 Bytes 32,768 99% 0.00%

3 Bytes 2,048 99% 0.21%

4 Packets 12,167 95% 0.00%

4 Packets 5,832 94% 0.04%

4 Bytes 33,444,432 96% 0.00%

4 Bytes 8,388,608 94% 0.10%

5 Packets 32 26% 0.00%

5 Packets 20 24% 0.94%

5 Bytes 9,261 17% 0.00%

5 Bytes 5,832 9% 0.75%

6 Packets 16 70% 0.00%

6 Packets 8 69% 0.64

6 Bytes 32,768 71% 0.00%

6 Bytes 2 67% 0.96%

5. CONCLUSIONS

The tool performs very differently on different data sets. With

the older DTE98W2D6 data set Figs. 4 and 5, compressing by

packet thresholds performs poorly while compressing by byte

thresholds performs well. With the CDX09U020 and the

CICIDS17 data sets Figs. 6, 7, 12, and 13, compressing by

packet and byte thresholds perform equally well. With the

MACCDC2010 and ISCXIDS 2012 data sets Figs. 8, 9, 10, and

11, compressing by packet and byte thresholds performs poorly.

With the RW2016 data Figs. 14 and 15, compressing by packet

and byte threshold performed equally poorly.

The difference compressing by packets and bytes on the

DTE98W2D6 data sets may be explained by the extensive use

of TELNET. TELNET generates a large number of very small

packets as each character entered on the keyboard is sent from

the client to the server then echoed from the server to the client.

Surprisingly the poor performance of this compression tool on

the MACCDC10 and ISCXIDS12 data sets seems to be for

opposite reasons. The MACCDC10 data set has a lot of very

small flows. This can be seen in that we were able to stop

transmitting packets after only 16 while only changing the size

of the data set by a single percentage point. These very small

flows may have been generated by a large amount of scanning

activity. The ISCXIDS12 data set has a lot of very large flows

and the malicious traffic seems to be very deep in these flows.

This is evident because when we stopped transmitting packets

after 12,167, the size of the data set was reduced by 90% but

42.95% of the alerts were lost. The preponderance of alerts

were generated in the Hyper Text Transport Protocol. Almost

5600 of these alerts involved a single host, 216.18.165.250. Of

these flows 48 of them are over 5000 packets long with as many

as 100 alerts per session.

The live capture data is very interesting. We can stop

transmitting flows after only 2 packets and compress the traffic

to 68% of the original size. The reason behind this is that the

flow compressor tool only works on IP version 4 (IPv4) TCP

packets. Only 53% of this traffic is IPv4, and only 35% is

IPv4/TCP. At 68% compression we have purged almost all of

the IPv4/TCP packets. A closer examination of the alerts

reveals that only 3 alerts were contained in the TCP traffic. If

the flow compression tool handled IP version 6, we would have

seen very good performance on this live capture data.

The results of these experiments demonstrate that flows that are

malicious manifest that maliciousness early. When we saw

malicious activity deep in a flow, it was usually not the first

occurrence of malicious activity in that flow. This strategy

should be effective in reducing the amount of network traffic

sent from the sensor to the CAS. This is especially true when

coupled with Snort’s ability to capture malicious traffic once it

has been detected. Merging traffic compressed by truncating

flows with the traffic captured by Snort should provide the

analyst with the complete session for review. We achieved

some good compression, but flow based compression alone is

insufficient to reduce the network traffic that must be

transmitted from the sensor to the CAS to less than 10% of the

original size.

In future work, we will implement the processing of IP

version 6, and conduct experiments with more data sets. The

end goal is to integrate this technique and other network

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 2 - YEAR 2019 47

compression techniques including lossless compression to

reduce the amount of traffic that needs to be transmitted to the

CAS to less than 10% of the initial traffic volume.

6. REFERENCES

[1] S. C. Smith and R. J. Hammell, "Proposal for Kelly

Criterion-Inspired Lossy Network Compression for

Network Intrusion Applications," Journal of Information

Systems Applied Research, vol. 10, no. 2, pp. 43-51, aug

2017.

[2] J. L. Kelly, "A new interpretation of information rate,"

Information Theory, IRE Transactiosn on, pp. 185-189,

1956.

[3] M. Roesch, "Snort: lightweight intrusion detection for

networks," in Proceedings of the 13th System

Administration Conference (LISA '99), Seattle, WA, 1999.

[4] V. Paxson, "Bro: a system for detecting network intruders

in real-time," Computer Networks, pp. 2435-2463, 1999.

[5] S. C. Smith, R. J. Hammell, K. W. Wong and J. M. Carlos,

"An experimental exploration of the impact of multi-level

packet loss on network intrusion detection," in 2016 IEEE

14th International Conference on Software Engineering

Research, Management and Applications (SERA), Towson,

MD, 2016b.

[6] R. A. Kremmerer and V. Giovanni, "Intrusion detection: a

brief history and overview (supplement to Computer

magazine)," Computer, pp. 27-30, 2002.

[7] S. C. Smith, S. R. Neyens and R. J. Hammell, "The use of

Entropy in Lossy Network Traffic Compression for

Network Intrusion Detection Applications," in

Proceedings of the 12th International Conference on

Cyber Warfare and Security {ICCWS} 2017, Reading

(UK), 2017.

[8] N. Ierace, C. Urrutia and R. Bassett, "Intrusion Prevention

Systems," Ubiquity, pp. 2-2, 2005.

[9] K. S. Long, "Catching the Cyber Spy: ARL's Interrogator,"

Army Research Laboratory, Aberdeen Proving Ground,

2004.

[10] K. S. Long and J. B. Morgan, "Using data mining to

improve the efficiency of intrusion detection analsysis,"

Army Research Laboratory, Aberdeen Proving Ground

(MD), 2007.

[11] S. C. Smith and R. J. Hammell, "The use of Snap Length

in Lossy Network Traffic Compression for Network

Intrusion Detection Applications," Journal of Information

Systems Applied Research, vol. 12, no. 1, pp. 17-25, 2019.

[12] V. Jacobson, C. Leres and S. McCanne, "PCAP -- packet

capture library," 8 March 2015. [Online]. Available:

http://www.tcpdump.org/manpages/pcap.3pcap.1.html.

[13] S. C. Smith and R. J. Hammell II, "Controlling

Experiments Using Mathematical Sequences," US Army

Research Laboratory, Aberdeen Proving Ground, MD,

2018.

[14] S. C. Smith and R. J. Hammell II, "The Use of Packet

Header Anomaly Detection in Lossy Network Traffic

Compression for Network Intrusion Detection

Applications," US Army Research Laboratory, Aberdeen

Proving Ground United States, 2018.

[15] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R.

Kendall, D. McClung, D. Weber, S. E. Webster, D.

Wyschogrod, R. K. Cunningham and M. A. Zissman,

"Evaluating intrusion detection systems: the 1998 DARPA

off-line intrusion detection evaluation," in DARPA

Information Survivability Conference and Exposition,

2000. DISCEX'00. Proceedings, Hilton Head, SC, 2000.

[16] B. Sangster, T. O'Conner, T. Cook, R. Franelli, E. Dean,

W. J. Adams, C. Morrell and G. Conti, "Toward

instrumenting network warfare competitions to generate

labeled datasets," in Proc. of the 2nd Workshop on Cyber

Security Experimentation and Test CSET09, Montreal

Canada, 2009.

[17] S. C. Smith, The effect of packet loss on Network Intrusion

Detection. MS Thesis, Towson, MD: Towson University,

2013.

[18] A. Carlin, D. P. Manson and J. Zhu, "Developing the

Cyber Defenders of Tomorrow with Regional Collegiate

Cyber Defense Competitions (CCDC)," Information

Systems Education Journal, pp. 3-10, 2010.

[19] A. Shiravi, H. Shiravi, M. Tavallaee and A. A. Ghorbani,

"Toward developing a systematic approach to generate

benchmark datasets for intrusion detection," Computers &

Security, vol. 31, no. 3, pp. 357-374, 2012.

48 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 17 - NUMBER 2 - YEAR 2019 ISSN: 1690-4524

	ZA260PW19.pdf

