I ncor porating Gaming in Softwar e Engineering Projects. Case of RMU Monopoly

Sushil ACHARYA
School of Engineering, Math and Science, Robert Morris University
M oon Township, Pennsylvania 15108, USA

and

David BURKE
School of Engineering, Math and Science, Robert Morris University
M oon Township, Pennsylvania 15108, USA

ABSTRACT

A major challenge in engineering education is retaj student
interest in the engineering discipline. Active ot

involvement in engineering projects is one way efaining

student interest. Such involvement can only beizedl if

project inception comes entirely from the studéritis paper
presents a software game, RMU Monopoly, developed a
project requirement for a software engineering seuand

describes the challenges and gains of implemerginch a

project.

The RMU Monopoly was proposed by three junior safev
engineering students. The game is a multi-platfeoftware
program that allows up to eight players and impletsiehe
rules of the Monopoly board game. To ensure agdility game
was developed using the spiral software developmadel.

The Software Requirements Specification (SRS) derurwas
finalized through an iterative procedure. Standahdified

Modeling Language (UML) diagrams were used for piaid
design. A Risk Mitigation, Monitoring, and Managemélan
(RMMM) was developed to ensure proactive risk mamagnt.
Gantt chart, weekly progress meetings and weeklynsc
meetings were used to track project progress. Qi Sub-
Version were used in a client-server architectardavelop the
software. The project was successful in retainingdent
interest in the software engineering discipline

Keywords: Software Game, Monopoly, Retention, Education

1. INTRODUCTION

A major challenge in engineering education is retej student
interest in the engineering discipline. This hasrba concern
for many years. More than 70 years ago studentugtazh rate
stood at 28%, in 1993 the graduation rate stood7&b, and
now the average graduation rate stands at 56%lJikp other
engineering programs Robert Morris University (RMU)
engineering department also has its share of stugémntion
issues. Researchers have mentioned unapproachable
condescending faculty [2], inability of schoolsadmit better
students [3], and lack of learning communities §4] factors
affecting engineering student retention rate. AtlRMwas felt
that having lecture intensive engineering coursésdt assist
in student understanding, did not provide adequsateds-on
real life experience needed for the competitive fjudrket, did
not make education interesting enough for studeants
contributed to reduced student interest in engingetn view

ISSN: 1690-4524

SYSTEMICS, CYBERNETICS AND INFORMATICS

of these issues, as of spring of 2006, RMU’s eraging
department enhanced all of its engineering courbgs
incorporating laboratory sessions. Two 50 minutssi®n per
week was allocated for lectures and one 2.5 hassien per
week was allocated for lab exercises. This stratelgicision
was made to ensure that students had adequate-tiandal
world experience. After all we tend to retain 70%ndat we
learn when our involvement is receiving and pgptting, and
90% when our involvement is being there [5]. Hands-
experience assists in students understanding ofepses,
methods and tools by mapping theory to practiceaddition
all course instructors were given the liberty ta@adrporate
hands-on components like course-based projectsl fVisits
and expert talk sessions into their syllabi.

One such course incorporating all of the listed dsaon
components is ENGR3410: Fundamentals of Software
Engineering. This is a required junior level coui@esoftware
engineering majors. However in this course the eggr of
assigning course-based projects takes into cordiderstudent
interest. It is felt that active involvement in cse-based
projects can only be realized if project inceptimmes entirely
from the student and the student is eager to seggqdr
completion. Students are encouraged to propose ngami
projects. Introducing games in software engineeiggot a
new concept but rather one that is being used byyma
programs to add the fun factor needed to engagkeists. The
growing popularity of computer games coupled withe t
Computer Science sophistication required to budday's
entertainment applications, presents an opportutstyuse
computer games as a means to better train Softrgeeers

(61.

This paper presents a software game, namely “RMU
Monopoly”, developed as a student initiated courased
project requirement for ENGR3410. The paper makes a
attempt to present the pains and gains of majovigcareas of
the Software Development Life Cycle (SDLC) fromtadent —
instructor perspective.

The Need for Course-Based Projects

In order to keep up with the demand for skilledtwafe
developers, academia must respond by developingcelum
that fuels the creativity and passion of studer@eftware
Engineering students at RMU are introduced to @mgning
concepts through required courses like C++, Jamd, Bata
Structures. However students are not challengedigindo
develop software programs that would further stiieag their

understanding of programming methods and tools. One

VOLUME 7- NUMBER 1 - YEAR 2009 25

approach in keeping students motivated is rapidctfanal

development of a software product with the assweahat the
product will be publicly displayed. Releasing agmam to the
public is a major incentive to spend the time reeglito make
quality software products. ENGR3410 recognizes shadents
need to be challenged to a certain level and usesse-based
projects to achieve this. One team released theatiwity and

passion into building a software version of the Mpoly board
game. Figure 1 depicts the game’s user interface.

- S Ty

Money 50 Moy [is00
Purple. ’7 ’7
Light Blue ,7 ’7
= I
- —— —
= if —
Tellow ’7 ’—
) I
Dark Blue ’7 9 ’—
e E— —
. —

Figure 1: RMU Monopoly

Project Inceptions by Students

Software projects are more interesting to studeviten the
students themselves participate in project incepsiod decide
on what to create. In the case of RMU Monopolydstis
choose the project and decided on the implementatio
methodology. Students were put into teams and asked
propose three possible software projects. The uottr
evaluated the proposed projects and selected omjecprto
qualify as a course project.

In section 2 we briefly describe the features of BRM
Monopoly. In section 3 we discuss how key software
development activities namely, requirement gathgraesign,
coding, testing and project management were imphedein
the context of this project. The challenges andghias from
the student side are reflected. And finally in Eett4 we
present the project postmortem and conclusions.

2.RMU MONOPOLY

RMU Monopoly is a RMU version of the Monopoly board
game developed by three software engineering jenidavid
Burke, Mike Brown, and Shaun Findlay. This game was
developed as an educational tool and as a gamengsudould
play with their friends. The game was designed &keruse of
pictures and references from the RMU campus. Staden
playing the game would immediately recognize RMU
landmarks and friends (maybe even see themselvethein
game). Many game features include inside refereti@sonly

a RMU student would understand. Furthermore theeg@n
completely platform independent. Students can ptay
Windows, Mac, and Linux. The game can be editecny
platform. Thus future students will be able to feétom the
code, regardless of the platform. The game is playith 2 to 8
players. It features everything one would expectinegular
game of Monopoly. For example properties are bowgid
traded. Chance cards add some surprises into thesnivell.
Here it was decided to vary from traditional Monbpand
make up new chance cards. Often these cards featfuneny
story resulting in the loss or gain of money orcgsa All in all,

26 SYSTEMICS, CYBERNETICS AND INFORMATICS

the most important requirement was to have fun a@thb
development and playing. Working on a software grbjwith

insider jokes and some degree of silliness is fuste fun to
program.

3. SOFTWARE DEVELOPMENT ACTIVITIESAND
CHALLENGES

A uniqueness in this project is that students werteequipped
with all the skills at project start time. Softwadeveloped
skills were taught in class in parallel to studantplementing
them on their projects. This meant students wespamsible
for implementing the skills after they were taughtlass.

Softwar e Development Environment

Programming Environment: Students were given
the responsibility of deciding the tools to used&velop the
game. This gave students the freedom to work in the
programming environment of their choice. Thoughghalents
had already taken courses on C++ and Java thioagpmwas
used to encourage students to try out new toolsasdo
improve and/or complement their programming skills.
However the drawback of this approach was for tbhdents to
learn the new tool on their own with very limitegpgport from
the professor. Without hesitation, students decidepgrogram
in C#. Their decision was based on the fact that v
platform independent and at least some memberkeofedam
had been exposed to C# in the required C++ couBge.
choosing what to build and how to build it, studendok
ownership of the project. It was no longer a homévexercise
to teach merely a language X, a tool Y, and a quinZe The
project and tools for creating it belonged to ttadents.
However a major challenge the students faced wasaiming
C# to be able to program games. Students acquivedC#
books and relied heavily on internet resourcesd@tts also
taught each other anything they knew about theuage that
they could use to meet their objectives. C# wasthetonly
challenge however. Learning general programmingrtiegies
was a considerably more time consuming task. Diffycin
learning to work with graphical user interfacesetiding, and
communication between classes were all noted in pibst
mortem report as being very time consuming.

Software Design Studio: Many of RMU's computer
labs are restricted as a defense against studastalling
inappropriate software. However the Software Desigadio
(SDS) did not have such restrictions. The softwdesign
studio is setup to serve the student body in aueigay.
Software engineering students are authorized ttalinand
uninstall software for education purposes. Studersted to
run a Subversion server, and were freely able tecd&@tudents
preferred OpenOffice.Org to the Microsoft Officeready
installed on all school computers, so the studemt® able to
install it themselves. Upon request, Visual Stud@®5 was
installed to the computers being used. None ofwlisld have
been possible had the school setup strict guidelioa
computer usage. The students were even given héiers
access into the SDS. The freedom to use the comsputehe
way students wanted to, assisted immensely in dlceess of
the project.

Hardware Environment: Hardware requirements
were well defined. Students wanted the game to aurall

VOLUME 7- NUMBER 1 - YEAR 2009 ISSN: 1690-4524

major platforms, Windows, Linux, and Mac, and sa@yth
needed the platform specific machines to test thesgram.
Unfortunately only Windows and Linux machines were
available in the SDS. A hardware requirement was ithmust
be able to run .NET or Mono. However as a Macintosh
machine was not available in the SDS this couldbeotested.
Another hurdle was that the school did not allow 8DS’s
Linux server to be accessed off campus for secue@gons.
Since the students used this server for hostinig saéversion
repository, this handicapped students ability tokn@motely.
This issue was resolved by doing most of the warkampus

Resear ch and Requirements Analysis

After the inception the first software developmeattivity
carried out was research and requirements analyisésoutput
of this activity was a Software Requirement Speatfon
(SRS) document. The students spent time researttingame
of Monopoly. The students had played the game beéord
knew the basic rules of play. Still the researcbvigted each
student a better understanding of the game. For the
requirements analysis activity the students weked$o play a
dual role of a customer and a software developeasdo
effectively define the requirements and the projscbpe.
Requirements engineering was taught in the lechae of
class and the students used this theoretical utatelisg for
requirements analysis in a lab session. The stagmrformed
elicitation, analysis, specification and validatioof the
requirements. This forced students to really thirakd about
their project. It changed the ambiguous project RWU
Monopoly into a well defined project with adequégatures.
Students choose to include features like computetrelled
players and real photos taken around campus tinysarts of
the game. Students also surveyed their friends hatvthey
wanted in the game. To make the project have ifeaflavor,
the professor implemented “creeping requiremenysatding
a new requirement as the students were beginningptk on
the design phase. The new requirement was to iaciideo
streams in the game. This was added to simulatelthrging
requirements of real world customers. All of thtgmsilated
students to really think about and get involvechwite project.
Students also decided on the scope of the project.\

Softwar e Design

It was decided that the spiral software developmaotel
would best fit a project of this nature. The spiraddel allows
agility and easy removal of requirements when mgriehind
schedule. The model also helped students make rbette
estimations. Unified Modeling Language (UML) diagsa
were used for software design. Students createdeacase
(Figure 2) and class diagrams (Figure 3) for thugqut.

Software Coding

Coding the program took a significant amount ofetin€ode
was divided up into modules. At weekly scrum megithe
team discussed which modules needed to be donevhiot
were ready. The team assigned who would be in ehairgach
module and design them too. Most of the design weak ad
hoc, written on white boards. Coding the projecuieed large
amount of time just in research. The team decidedry
something like threading, when no one had actuabed
threading before. This made coding the hardest pfthe
project. The only way to make up for this deficigneas to
spend more time coding and researching how to code.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS

1 Casual User

Primary User

1

Pays Mortgage

Figure 2: A Use Case diagram

The students were used to writing programs withy anifew
hundred lines of code, but RMU Monopoly took thowdsa of
lines of codes (KLOCSs). Students used Sub-Versiooontrol
the source code and distribute it. They also uggecooriented
design to ease in the design. Modules that requinethy
replications of data, such as data about each plaxgge made
much easier with classes and objects.

<<interface=>

=<inerface>> Gamebaard
title scresen

setPlayers() void » CreateMewPlayers(): void

T
|
|
Player |
¥
maney :int <<interface>=>

propCwned : int take Tum
locatian ¢ int e — — — — — — — — — —

take urn{) : void
assets(} : void
I

1
I
:
v T ¥

=<interfacas=> <<interface=>
assets trade

Figure 3: Early draft of a Class diagram

Software Testing

During the duration of this project informal unitdhintegration
tests were carried out. However no formal testmaktplace.
This was due to the fact that students had no ledyd of
formal testing and the deadline for delivery did atiow for

testing. The students did however use the samegirfgr a
Validation and Verification class taken the follogisemester.
In this class unit and integration testing weregtaun detail
and practiced on the RMU Monopoly program. Somelestis
decided for themselves to continue working on fixihe many
bugs found, despite no credit being offered. Sttldecided

VOLUME 7- NUMBER 1 - YEAR 2009 27

for themselves to host the code to Google Codestard an
issues tracking system on it to monitor the bugsifb NUnit
was used to create unit test cases for the proghdsn. some
manual testing was performed to find other issi&tadents
took part in an inspection meeting for one lab lie tlass.
During the inspection a RMU alumni came in to tallout how
his company did inspection meetings. While idetiig testing
should have been done concurrently with developyme
and lack of adequate knowledge forced this to laeqa in a
separate class.

Project Management

The project was implemented mimicking a true sofewa
development environment. Students took on seltsakgroles
in the project, including requirements manager, igies
manager, and code manager. These roles were rwtedfand
as needs arose the students took additional rbksssuited
them best. Some new roles were graphic artist aofeq
manager. The professor became the customer arstutients
gave bi-weekly presentation on how the project was
progressing. The presentation came complete wibhopmpes
of the game, which was easy to do with the spiezietbpment
model. Besides the professor another category sfomers
were the students' colleagues in the same class tlaad
members of the RMU student chapter of the Assariatf
Computing Machinery (ACM). These colleagues lookedhe
game and provided constructive suggestions. Mangesits
outside the development group also became pariialigived
when the developers took photos of them to be useithe
game. This technique created a link between theldpers and
the "customers" which strengthened the game desigaiso
provided a real life experience to show the imparéaof good
communication with the customer.

Project Estimation: Estimations can be very
challenging to students who have no real world ezpee to
back up estimations. However as mentioned eatlierSpiral
model assisted students in making project estimsatidhe goal
was to keep a 40-20-40 time distribution for thee¢h
development activities: design, coding, and testiigwever
with the challenges in learning new concepts ofcgamming
language the time distribution had to be reguleehgstimated.
At project completion requirements gathering, reseaand
design required 70% of the total time. Researchlired both
understanding the Monopoly game as well as learmiegy
programming concepts. Likewise coding and testieguired
20% and 10% respectively of the total time. Figdrdepicts
the final time distribution. In this chart the raseh component
involves understanding Monopoly as well as learning
programming concepts.

Requirements
Gather and
Design
Research

B Coding

H Testing

Figure 4: Time allocation

Project Schedule: A project schedule (Gantt chart)
was created to ensure that tasks and subtasks preperly
understood and resources were adequately assigikedany

28 SYSTEMICS, CYBERNETICS AND INFORMATICS

other project, scheduling was done to keep track®fproject.
However changes in project scope required reworkihthe
schedule towards the delivery deadline. Figure piade a
portion of the Gantt chart created for this praject

RMMM Plan: A Risk Mitigation, Monitoring, and
Management plan (RMMM) was developed to ensureqgbinga
risk management. This included what requirementddcbe
scrapped or down scaled if the project went belsicitedule.
The project schedule and weekly progress meetireggs wsed
to keep track of project progress. On days wherkwas done
(mostly weekends and late at night) a scrum meetiag held
to review progress and set goals for the day. Wherproject
did fall behind schedule, students were immediaa@are and
made informed decisions on how to get back on track
However the initial RMMM plan had to be changednesv
challenges became visible.

o 7007 1140007 210607 280007 [4NovOr [11Novo7 __[18Nov07 __[2S Novor |2 Dec o
" [IS T WIT JF 555 JWIT TWIT TF T 5 T T IWIT P 5 5 T WIT 5 5 T Pl 5 & e T T[T 5 5 JIT TWIT T [5 [T T 5 & T Wit T

<< < % <@

< 8 RRRREE %%

<

<%

= EEEREREEEREREENREEREEEEERTE R I]

Figure 5: RMU Monopoly Gantt chart

4. PROJECT POSTMORTEM AND CONCLUSIONS

Project ownership namely a software gaming projeas the
key factor in retaining student interest in the twafe
engineering process. This ownership created moeedsive to
finish the project than would a professor initiatadirse-based
project. The best example of this commitment waswsh
during the latter part of development. Near the dai of the
project, it was decided that certain features latlet dropped
and/or scaled down in order to make a working gahiese
dropped features wouldn't necessarily mean a badegisince
the students were also being graded on participatind the
understanding of the software engineering condagitsy used.
However it was decided that, despite there beingemough
time, the feature to “trade properties with othé&yprs” was
crucial for an enjoyable game of monopoly. Anotherdle
that could stop an uninterested student was legrainumber
of new tools for the project. C#, AgroUML, Mono (BMET
implementation for Linux and Mac), and Sub-Versiere all
new tools for the students. However, with interiestnaking
the best gaming program possible, students shrugffethe
necessary learning curve of these tools. Anothetofain
handling these new tools was that by using theabpiodel,
prototypes were made, inspiring the students th&t tan use
such tools to make real results. The problem cbelditigated
more by teaching a variety of tools and by having a
knowledgeable pool for guidance, so that answerstudent
questions could be easily available.

VOLUME 7- NUMBER 1 - YEAR 2009 ISSN: 1690-4524

There are unfortunately a number of challenges to
implementing a project similar to RMU Monopoly. A&muine
interest in software is needed for students to taterest and
ownership of their work. The best type of studentthis type
of project is one that would probably be prograngnaven if
they were not in school or work. While incorporgtigaming
can help students gain interest in software dewveéoy, it is up
to the student to commit. Also implementing thigpeyof
project in a larger class size may be challengitge RMU
Monopoly project was done in a small class sizas Bliowed
for individual attention from the professor. Inader class, it
may be more tempting to assign one generic préfjedtevery
student must complete. While this would make grgdamd
teaching easier, it would strip the students of enship and
interest of their project.

In the experiences at RMU, retaining student irsteri

software engineering is vital to successful leagni€ourse
based gaming software projects like RMU Monopobaming

software was a successful means of keeping studi@eméest in

the SDLC. By letting students choose what theijgatowill be

and how to implement it, ownership of the projeesvgiven to
the students. Overall this resulted in a functiogame and a
superior learning experience with a fun factortfoe students.
This method could easily be adapted to suit otledleges in

the effort to attract, educate and retain futurdtwsoe

engineers.

5. REFERENCES

[1] Knight, D.W., etc. al., “Improving engineering Sard
Retention through Hands-On, Team Based, First-Year
Design Projects”, Proceedings 31% International
Conference on Research in Engineering Education,
ASEE, June 22-24, 2007, Honolulu, HI.

[2] Vogt, C. M., “Professors Need to Lighten UpASEE
PRISM, March 2008, Volume 17, Number 7.

[8] Huband, F.L., “Attracting best — and Keeping Them -
Comments from the publisherASEE PRISM, February
2008, Volume 17, Number 8.

[4] Meyer, J., et. al.,, “Retaining Freshman engineering
Students through participation in a first-Year lreéag
Community: What works and what doesn®,oceedings
of the 2007 American Society for Engineering
Education Annual Conference & Exposition, Copyright
2007, American Society for Engineering Education

[5] Morse, L.C. and Babcock, D.IManaging Engineering
and Technology, 4" Edition, Prentice Hall International
Series in Industrial and Systems Engineering, Eslito
Fabrycky, W.J. and Mize, J.H., 2007.

[6] Claypool K., and Claypool M., “Teaching Software
Engineering through Game DesigrProceedings of the
2005 conference on Innovation and Technology in
Computer Science Education (ITiCSE), 2005 June 27-
29, Monte De Caparica, Portugal.

[7] Welch, L. R., etc. al., “Enhancing Engineering Eation
with Writing-to-learn and Cooperative Learning:
Experiences from a Software Engineering Course”,
Proceedings of the 2002 American Society for
Engineering Education Annual Conference &
Exposition, Copyright 2002, American Society for
Engineering Education.

[8] Wankat, P. and Oreovicz, F., “Making them wanttay’s
ASEE PRISM Volume 14, Number 7, 2005.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS

VOLUME 7- NUMBER 1 - YEAR 2009

29

	ZE817AN

