
Modeling and Solving the Train Pathing Problem

Yusin Lee

Department of Civil Engineering, National Cheng Kung University

Tainan 701, Taiwan

and

Chuen-Yih Chen

Department of Aviation and Maritime Management, Chang Jung Christian University

Tainan 711, Taiwan

Abstract

In a railroad system, train pathing is concerned with the

assignment of trains to links and tracks, and train timetabling

allocates time slots to trains. In this paper, we present an

optimization heuristic to solve the train pathing and timetabling

problem. This heuristic allows the dwell time of trains in a

station or link to be dependent on the assigned tracks. It also

allows the minimum clearance time between the trains to

depend on their relative status. The heuristic generates a number

of alternative paths for each train service in the initialization

phase. Then it uses a neighborhood search approach to find

good feasible combinations of these paths. A linear program is

developed to evaluate the quality of each combination that is

encountered. Numerical examples are provided.

Keywords: train, optimization, scheduling, pathing, timetabling

1. INTRODUCTION

The path of a train service is the ordered set of rail segments

assigned to the train trip, and the train timetable specifies the

time when the train uses each rail segment. The former

represents the spatial attribute of the movement of the train in

time-space, while the latter represents the time attribute. These

two attributes are deeply inter-related and should be considered

simultaneously when developing operating plans for train

systems.

Developing train paths and timetables for a rail system is a

complicated task. The physical rail facility is shared by multiple

trains, and the fact that trains are confined to tracks means that

detailed planning is necessary to avoid conflicts and enhance

efficiency. Due to its importance, related topics have attracted

considerable attention in the literature. Most published results

deal with the train timetabling problem (TTP), which attempts

to develop timetables for train systems without considering the

exact path of individual trains. Early work by Frank[1] analyzed

the TTP mathematically and proposed solution methods.

Optimization models for the TTP are used in a number of papers,

for example [2-10]. In addition, Cordeau et al.[11] has presented

a survey of relevant optimization models. Due to the complexity

of the TTP, most contributions are limited to simplified models

or small instances. In particular, most papers focus on single

track rail lines or one-way tracks. Some results take into

consideration the track capacity constraint, which requires that

the meeting and overtaking between trains to only occur within

stations. Station capacity is also considered by some models.

There have been few studies concerning the train pathing

problem (which assigns trains to tracks and determines their

times as well). Carey[12] proposed a mixed integer program to

solve for the paths of trains in a one-way-track system. The

numerical example provided in Carey’s paper has 10 nodes, 28

links, and 10 train services and requires significant amount of

time to solve. In another article, Carey[13] has extended the

model from one-way to two-way-tracks. The resulting model is

also a mixed integer program, which the author reasoned is

easier to solve than that of his earlier model[12], but this newer

study did not provide testing results. Other works have

considered the problems of routing trains through stations, e.g.

[14-16]. The problems studied in these papers are different from

that of ours in nature, scope and scale.

This research was motivated by the operations of the Taiwan

Railways Administration (TRA). In a highly developed and

densely populated country like Taiwan, rail systems are mainly

multi-track networks. Lines between stations as well as within

stations can be bi-directional. Inter-station distances are short;

headways are tight with a train every few minutes. At stations

there is often a choice of up to four tracks with platform access

at which a train can stop, sometimes together with additional

tracks that do not have platform access. The tracks can be

one-way or two-way. In such a busy and complicated system,

conflicts between trains are widespread and interdependent, and

many factors have to be considered in detail in the optimization

model to achieve useful results.

In this paper, we propose a heuristic to solve for a set of train

paths and a timetable for such a complicated system as

described above. The heuristic includes a number of realistic

factors that are important in practice and have not been covered

in previous papers. For any given link, the same train can have

different dwell times depending on the assigned track, and

different trains can have different track preferences. The

minimum clearance time (headway) between consecutive trains

also depends on the relative status of the trains as well as the

track layout, i.e., whether the two trains travel in the same

direction, if they use the same track, or if the two different

tracks they use cross each other. The rule that only one train can

occupy one block at any time is also observed. The optimization

objective is to generate a timetable as close as possible to the

given ideal timetable.

This paper is divided into five sections. Following this

introduction, section two defines the problem studied in this

research. Section three explains the solution heuristic in detail.

Section four presents computation results, followed by

conclusions in the final section.

2. PROBLEM DESCRIPTION

In our model, we view the railroad as a collection of links,

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 2009 63ISSN: 1690-4524

tracks, and blocks as illustrated in Figure 1. A link is either a

segment of railroad between consecutive stations or the segment

of the railroad within a station. The links are connected together

serially as illustrated in Figure 1(a). Each link can have one or

more parallel tracks as illustrated in Figures 1(b) to 1(e).

Therefore, when a train service uses a link, it will use exactly

one of the tracks in the link. Tracks are composed of one or

more blocks connected serially. Within a station, a block

represents a stretch of a track. For example, a block could be the

segment of a track with access to a platform for passenger

boarding. Between consecutive stations, a block corresponds to

a section of a track, which allows no more than one train at any

time. In either case, only one train can occupy a block at any

point in time. If a train service uses a particular track, it will use

all its blocks in a serial manner. Sometimes, two tracks cross

each other. When this happens, we view the crossing point as

one block which is shared by these two tracks. As illustrated in

Figure 1 (b), track 2 is composed of blocks 2, 3, and 4, while

track 3 is composed of blocks 2, 5, and 4. These two tracks

cross at the shared blocks 2 and 4. Figure 1 (c) shows a station

that also has three tracks, but none of the tracks share the same

blocks. Stations of these configurations are common in the TRA

system. A few rail segments in Figure 1 (c) do not belong to any

block because they play no role in the heuristic we propose.

Figure 1 (d) shows a 4-track station without shared blocks.

Finally, Figure 1 (e) shows a stretch of railroad between the

stations. This stretch of railroad has two tracks, divided into two

blocks each.

(a) A link is a segment of the railroad.

(b) A station where tracks 2 and 3 share blocks.

(c) A station where no tracks share blocks.

(d) A 4-track station without shared blocks.

(e) A stretch of railroad between stations.

Figure 1. Illustration of links, tracks, and blocks in a

railroad system.

A service is defined as a train trip that travels from its

origination station to its destination station, passing through a

number of links. We assume that the locomotive for each

service is given and fixed, but that different services can use

different locomotives, resulting in different tracking power and

other properties. Every service is given a target departure time,

which is defined as when (in the resulting timetable) a service

should plan to become ready for its first station in the trip.

Besides, each service has an associated minimum and maximum

dwell time at each block it might use, which is usually derived

from its tracking power as well as other properties. For a block

that is part of a station, the dwell time is the stopping time of the

service at that station. Otherwise, the dwell time is the travel

time of the train on that block. Because different trains have

different travel speeds and tracking power, and different

services have different stopping time at stations, the dwell times

can differ between services, even for the same block. The dwell

time of a train on a track is the sum of the dwell times of the

train on all the blocks of that track. Note that parallel tracks of

the same link can have different dwell times for the same train

due to different physical conditions (e.g., speed limits imposed

by turnouts) of the blocks that make up these tracks. Therefore,

the dwell time of a train on a link depends on the track it uses.

A train path is an ordered set of tracks that a service can take on

its trip. The ordered set of links that each service uses is given

and fixed. However, because each link can contain multiple

parallel tracks, it is possible for one service to have multiple

alternate train paths, all using the same set of links. Each train

path can also be assigned a departure time at its first station.

Based on this departure time, and assuming that the dwell times

of the train at each block in the path are the average of its

minimum and maximum dwell times at that block, the entering

and exiting time of any train path at each of its blocks can be

easily calculated. These times are referred to as pseudo times to

distinguish them from the final timetable. The departure time of

a train path at its first station is referred to as pseudo target

departure time.

The minimum clearance time between two consecutive trains

that use the same link can depend on the track assignment.

Suppose two trains enter the station shown in Figure 1 (c) from

the left hand side on the upper line. If they both are assigned to

the same track (e.g. track 3), then an appropriate headway at the

track should be arranged in the timetable. If they are assigned to

different tracks, there are usually no restrictions to regulate the

times they enter or leave the station. (However, they still have to

be properly separated on the approaching block, which they

both use before entering the station.) It is more complicated

when tracks cross each other. Consider the station layout in

Figure 1 (b), and suppose that one train enters track 2 of the

station from the left hand side on the upper line, and a second

train enters track 3 from the right hand side on the lower line.

Although the two trains travel in different directions, approach

the station from different tracks, and use different tracks in the

station, they still have to be correctly time-separated because

tracks 2 and 3 cross each other. If the second train is assigned to

track 1 instead, there will be no such requirement.

The required clearance time between trains that use the same

Track 4
Track 3

Track 1
Track 2

Block 2

Block 1

Block 3

Block 4

Two-way
One-way

Link 2: Inter-Station Link 3: StationLink 1: Station

Track 3

Track 1

Track 2

Block 1

Block 2

Block 3

Block 4

Block 5

Track 1

Track 2

Track 3

Block 1

Block 2

Block 3

Track 1

Track 2

Block 3 Block 4

Block 1 Block 2

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 200964 ISSN: 1690-4524

track can also depend on the relative status of the two trains. In

particular, track 3 in Figure 1 (b) and track 2 in Figure 1 (c) are

usually used by trains of both directions. In practice, the

minimum headway between the consecutive trains that use these

tracks depends on whether the two trains travel in the same

direction or not.

Planners often have priorities when selecting tracks for services.

For example, a higher priority service might prefer to use tracks

that have fewer switches, or a cargo train might prefer to avoid

tracks with platform access. For this purpose, we define a cost

for every possible track of every service, with more preferred

tracks having smaller costs. The cost of a path is the summation

of the costs associated with all tracks that path uses. Other

methods to define the costs are possible and can be easily

incorporated into this model if needed.

When more than one train uses the same track, they have to do

so one at a time. The relative order among the train services at

the tracks is critical to train timetables. Consider two train paths

i and j of different services, and consider two tracks a and b
being used by both paths. The order in which i and j use track a,

can be different from that of track b when they meet (if i and j

travel in opposite directions) or overtake (if i and j travel in the

same direction). If a and b are consecutive tracks, and the order

in which i and j is using them is different, then i and j will

conflict. For example, consider the railroad layout in Figure 2.

There are four tracks belonging to the three links in the figure,

named a to d. Suppose that there are two train paths i and j of

two different services that use all three links. Since tracks a and

b are consecutive, i and j should use the two tracks in the same

order, i.e., if path i uses track a before path j does, then path i

should also use track b before path j does, and vice versa. If i
and j maintains the same order on all consecutive pairs of tracks

they share, the two paths will not conflict. However, tracks a

and d are not consecutive, therefore the orders i and j using

these two tracks cannot determine if the pair will conflict. In

principal, two train paths can reverse orders multiple times

when trains re-overtake, but this is prohibited in practice, and

we define this case as a conflict as well. If two paths do not

conflict, the two paths are compatible.

Figure 2. A railroad with 3 links and 4 tracks.

The train pathing problem studied in this research can be

described as follows. Given a railroad system and a set of

services, the problem aims to solve for a timetable as well as a

track assignment plan for these services. Because the dwell

times of individual trains as well as the required clearance time

between consecutive trains depends on the track assignment,

train paths have to be considered simultaneously as timetables

are developed to obtain realistic results.

3. THE HEURISTIC

Consider a set of train paths F. If F contains exactly one path

for each service, and the paths are mutually compatible, F is a

feasible path set. Within a feasible path set, the exact paths of

all services are known. Therefore, for any block, the services

that use it are also known, and the order in which these services

use this block can be determined according to the services’

pseudo time. Based on this information, one can solve for the

optimum schedule that corresponds to a given feasible path set

with a linear programming (LP) model. Now we introduce the

model, starting from a definition of the symbols used in this

paper. Given information like sets and parameters are

represented by upper case letters, and decision variables are in

lower case letters.

P the set of all services

B the set of all blocks

I the set of blocks that are crossing points

jG target departure time for service j

iD the maximum allowed delay of any service at block i

jTrip the minimum time for service j to finish its trip

min

ijT the minimum dwell time of service j at block i

max

ijT the maximum dwell time of service j at block i

jB the set of all blocks used by service j

0

jB the first block used by service j

F

jB the final block used by service j

jiP ,- the service that uses block i immediately before

service j does

ijB the block that service j uses right before it uses block i

jW the weight of service j, which represents the relative

importance of the service as conceived by the planner.

ijkC the minimum clearance time between services j and k

when they occupy block i consecutively

jdelay the total delay time of service j

ija the scheduled time service j enters block i

ijd
 the scheduled time service j leaves block i

ijy
 the delay of service j at block i

jr
 the absolute value of the difference between Gj and

the scheduled departure time of service j

The LP model is listed below. The objective function (1) aims to

minimize the weighted sum of anomalies in time that occurred

with all services, including the delays at each block, and the

deviation of the scheduled departure times from the target

departure times.

Minimize

Pj

jjj drW elay0.005 (1)

The model has nine constraints as listed below. Constraint (2)

ensures that every train j occupies block i for at least min

ijT time,

except for the blocks that are crossing points.

min

ijijij Tad IBi j \ Pj (2)

Constraints (3) and (4) are also related to the length of the time

a train occupies a block. According to constraint (3), if service j

occupies block i for more than
max

ijT time, the excess time

will be regarded as a delay, which is limited by constraint (4) to

no more than iD .

max

ijijijij Tyad IBi j \ Pj (3)

iij Dy IBi j \ Pj (4)

Constraints (5) and (6) together makes jr equal to the

absolute value of the difference between Gj and the scheduled

arrival time of service j at its initial station.

jjBj Gar
j
0

Pj (5)

a
b

c

d

Link Link Link

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 2009 65ISSN: 1690-4524

jjBj Gar
j
0

Pj (6)

Constraint (7) ensures that there is at least
jjiPi

C
,,,

 clearance

time at block i, where j is a service that uses block i, and

jiP ,- is the service that uses the block immediately before j

does. The clearance time needed can depend on whether the

block resides in a station, or is located between stations, or is a

crossing point between tracks.

jjiPijiPiij Cda
,,,,, jBi Pj (7)

Constraint (8) ensures that any service will enter the next block

as soon as it leaves the previous block. This constraint prevents

any train from disappearing for any length of time.

ijjB
ad

ij , jBi Pj (8)

Constraint (9) makes the variable
jdelay equal to the total

delay time of service j.

jjjBjB
Tripdelayad

j
F
j

0
Pj (9)

Finally, constraint (10) limits the delay term ijy to

non-negative values.

0ijy jBi Pj (10)

This LP model has several important properties. First, because

the choice of tracks at each link of each train service is given in

this model, the dwell time of each individual train at each link is

known and can be reflected explicitly in constraints (2) to (4).

Therefore, the requirement that the dwell times of trains should

depend on the tracks assigned can be correctly considered.

Second, the crossing points are modeled as blocks, enabling

constraint (7) to maintain proper headway between crossing

trains even when they use entirely different tracks. Third,

because constraint (7) is based on blocks instead of links, and

because the train paths are known, the requirement that

headways between trains depend on the trains’ relative status

can be explicitly included by using the correct
jjiPi

C
,,,

 value

in constraint (7). Finally, the model does not contain any integer

variables, thus it can be solved with the highly efficient simplex

algorithm using commercial software (for example, CPLEX).

We are now ready to present the proposed heuristic by piecing

together the components introduced above. The basic concept is

as follows. First, we generate a number of possible alternate

train paths for each service as well as an initial feasible path set.

At the beginning of each iteration, the heuristic randomly

replaces one of the paths in the current feasible path set F with

another train path selected from the alternate paths, to reach

another slightly different feasible path set F’. The new feasible

path set F’ can be evaluated with the LP model above according

to the paths it contains. The objective function value of the LP

model (regarded as a large number if the model is infeasible),

together with the costs of each path in F’, is regarded as the

weight of the set F’, which represents its quality. Then, a

threshold accepting rule[17] accepts or rejects F’ based on its

quality. If F’ is accepted, it will replace F. Otherwise, F’ will be

abandoned. In either case, the heuristic proceeds to the next

iteration and repeats. When the heuristic ends, the best feasible

solution ever encountered is used as the final output. Details of

the heuristic are provided below.

The initialization phase of the heuristic involves generating the

initial feasible path set and generating a number of alternate

paths for each service. The initial feasible path set is generated

by the following method. First, generate one path for each

service, and then arrange the paths consecutively so that one

service will depart its origination station after the previous

service has arrived at its destination station. It is unlikely that

the set generated by this method will have good quality, but it is

always feasible. After creating the initial feasible path set, the

heuristic generates a number of alternate paths for each service.

The set of links used by each service is fixed, but the tracks

within the links are selected randomly when the paths are

generated. Let ps be the set of alternate paths of service s. The

pseudo target departure times of the paths in ps are evenly

spaced and distributed around the target departure time of s.

Computational experiments indicate that the CPU time as well

as the quality of the final solution is insensitive to the size of ps,

should ps remain within the range of 100 to 1500.

Following the initialization phase, the heuristic attempts to

improve F through iterations. Recall that the initialization phase

generated a set of alternate paths ps for each train service. At the

beginning of each iteration, the heuristic generates a new set F’

by slightly altering F. To do this, it first randomly selects one

service s and replaces its path in F with another path in ps. This

is done by repeatedly selecting alternate train paths from ps at

random until a path that is compatible with all other paths in F

is found. After obtaining a new feasible set F’, the new set is

evaluated to determine its quality. The quality of a feasible set is

represented by its weight, which is the sum of the objective

function value of the corresponding LP model and the costs of

each path in the set. For every block in the railway, one can

determine the set of services that use the block according to the

paths in F’, and can also determine the order by which they use

the block based on the paths’ pseudo time. This information is

sufficient for developing the LP model corresponding to F’.

Solving the LP models consumes the most CPU time among all

components of the heuristic.

A threshold accepting rule determines if F’ should be accepted

according to its weight. The heuristic maintains a threshold

value T, which starts at one-fifth of the weight of the initial set,

then gradually decreases along the process. If the weight of F’ is

less than that of F, or if it is higher yet still within the threshold

T, the new set F’ replaces F. Otherwise, F’ is abandoned and

the heuristic continues on to find the next possible set. The

heuristic also keeps record of the best set found. The T value

decreases by 1% whenever the best solution is not improved for

30 consecutive iterations. Also, if it happens that the weight of

the best known solution drops below 5T, T is lowered to 20% of

that weight. The heuristic terminates when T drops below 1.0,

or when the best solution cannot be improved for 300

consecutive iterations after a minimum of 5000 iterations are

completed. One can also set an upper bound on the total number

of iterations if desired. Figure 3 presents a simple flowchart of

the entire solution process.

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 200966 ISSN: 1690-4524

Figure 3. The solution heuristic flowchart.

4. COMPUTATIONAL RESULTS

This section presents some computational experiences. The two

examples are prepared based on a stretch of railroad operated by

TRA. The total length is 189.2 Km and has 40 stations. The

stations have four types of track layouts, including the three

types shown in Figure 1 and a simple, 2-track type. The railroad

is double-tracked between all stations unless stated otherwise.

Most of the tracks between stations have only one block, but

some are composed of two blocks, allowing two trains of the

same direction to pass between the two stations simultaneously.

Details of the railroad configuration are presented in Table 1.

Both examples are solved with a C++ language code using the

CPLEX 9.0 callable library. They are tested on a computer

equipped with a Pentium Pro central processing unit running at

3.2 GHz clock speed and 1 gigabytes of random access memory.

The operating system is Windows XP.

Table 1. Railroad configuration used in the examples.

Station

ID

Tracks

in

station

Distance to

next station

(km)

Blocks

between

next station

1 2 6.6 2

2 2 4.6 1

3 2 3.5 1

4 3 3.4 1

5 2 3.8 1

6 2 4.3 1

7 3 5.8 1

8 3 8.2 2

9 2 4.7 1

10 2 4.8 1

11 3 7.7 2

12 3 3.9 1

13 2 4.6 1

14 2 5.8 1

15 3 6.7 1

16 2 2.6 1

17 3 6.5 1

18 2 2.7 1

19 2 6.1 1

20 2 7.7 2

21 3 3.4 1

22 2 3.8 1

23 3 5.5 1

24 2 2.3 1

25 2 4.6 1

26 2 7.5 2

27 3 5.0 1

28 2 3.6 1

29 2 2.8 1

30 3 7.6 2

31 2 4.0 1

32 2 2.9 1

33 2 3.0 1

34 2 7.3 2

35 4 4.0 1

36 2 4.1 1

37 3 7.0 2

38 3 3.4 1

39 2 3.4 1

40 -- -- --

The two examples have 20 services each, with equal number of

them starting from either end. All services cover the entire

railroad, and their target departing times are separated by one

hour starting from 6 am. Not all trains stop at all stations, and

the stopping patterns differ as well. For both examples, the LP

model has approximately 6000 variables and 10000 constraints.

Figure 4 displays the resulting train diagram for Example 1. The

train diagram represents the trajectory of trains in time-space,

where the horizontal axis represents time, and the vertical axis

is associated with space. The horizontal lines mark the locations

of the stations. The CPU time taken to solve this example is

3373 seconds.

Figure 4. The train diagram for Example 1.

Example 2 differs from the previous example in that one section

of the railroad between two stations is assumed to be

single-tracked. The train diagram is shown in Figure 5, with the

single-tracked segment pointed out. The same segment is also

marked in Figure 4. By comparing the two figures one can see

the effect of the difference in track configuration. In Figure 4

some trains meet at the marked segment, during which the trains

use both tracks at the same time. All these meetings are

Time

Distance

6 7 8 9 10 11 12 13 14 15 16 17

Start

Generate initial set F

Generate alternate paths

Select a service s from F’

Select a path i from ps

Yes

No

F’ F

Evaluate F’

Accept?

Yes

No

F F’

Terminate?

Output

Yes

No

Is i compatible with all

other paths in F?

Replace the path of s in F’ with i

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 2009 67ISSN: 1690-4524

non-existent in Figure 5. Example 2 was solved in 3662 seconds.

In both examples all trains departed at their target departure

times.

Figure 5. The train diagram for Example 2.

5. CONCLUSION

In this research, we developed a heuristic to solve the train

pathing problem. In the initialization phase, the heuristic

generates a number of alternate paths for each train service. The

iteration phase that follows uses a neighborhood search process

to search for a good combination of these paths. The heuristic

uses a linear program to evaluate the quality of every feasible

path set encountered, and uses a threshold accepting rule to

determine if the new set should replace the current set. Several

important practical requirements are explicitly modeled,

including different train dwelling times on different tracks of the

same link, correct separation of trains using tracks that cross

each other, and the dependence of a minimum clearance time

between two consecutive trains on their relationship. The model

also arranges appropriate clearance time for trains using

crossing tracks. Examples of up to 40 stations and 20 train

services are solved.

6. REFERENCES

[1] O. Frank, “Two-way Traffic on a Single Line of Railway”,

Operations Research 14, 1965, pp.801-811.

[2] R. Sauder and W. Westerman, “Computer Aided Train

Dispatching: Decision Support Through Optimization,”

Interfaces 13, 1983, pp.24-37.

[3] E. Petersen, A. Taylor, and C. Martland, “An Introduction

to Computer Aided Train Dispatch”, Journal of Advanced

Transportation 20, 1986, pp.63-72.

[4] D. Jovanovic and P. Harker, “A Decision Support System

for Train Dispatching: An Optimization-Based

Methodology”, Journal Transportation Research Forum

31, 1990, pp.25-37.

[5] D. Kraay, P. Harker, and B. Chen, “Optimal Pacing of

Trains in Freight Railroads: Model Formulation and

Solution”, Operations Research 39, 1991, pp.82-99.

[6] D. Kraay and P. Harker, “Real-Time Scheduling of Freight

Railroads”, Transportation Research B 29, 1995,

pp.213-229.

[7] M. Carey and D. Lockwood, “A Model, Algorithms and

Strategy for Train Pathing”, Journal of Operational

Research Society 46, 1995, pp.988-1005.

[8] A. Higgins, E. Kozan, and L. Ferreira, “Optimal

Scheduling of Trains on a Single Line Track”,

Transportation Research B 30, 1996, pp.147-161.

[9] X. Zhou and M. Zhong, “Bicriteria Train Scheduling for

High-Speed Passenger Railroad Planning Applications”,

European Journal of Operational Research 167, 2005,

pp.752-771.

[10] A. Caprara, M. Monaci, P. Toth, and P. Goida, “A

Lagrangian Heuristic Algorithm for a Real-World Train

Timetabling Problem”, Discrete Applied Mathematics

154, 2006, pp.738-753.

[11] J.F. Cordeau, P. Toth, and D. Vigo, “A Survey of

Optimization Models for Train Routing and Scheduling”,

Transportation Science 32, 1998, pp.380-404.

[12] M. Carey, “A Model and Strategy for Train Pathing With

Choice of Lines, Platforms and Routes”, Transportation

Research B 28, 1994, pp.333-353.

[13] M. Carey, “Extending a Train Pathing Model From

One-Way to Two-Way Track”, Transportation Research

B 28, 1994, pp.395-400.

[14] L. Kroon, H. Romeijn, and P. Zwaneveld, “Routing Trains

Through Railway Stations: Complexity Issues”, European

Journal of Operational Research 98, 1997, pp.485-498.

[15] P. Zwaneveld, L. Kroon, and S. Hoesel, “Routing Trains

Through a Railway Station Based on a Node Packing

Model”, European Journal of Operational Research 128,

2001, pp.14-33.

[16] M. Carey and S. Carville, “Scheduling and Platforming

Trains at Busy Complex Stations”, Transportation

Research A 37, 2003, pp.195-224.

[17] G. Deck and T. Scheuer, “Threshold Accepting: A General

Purpose Optimization Algorithm Appearing Superior to

Simulated Annealing”, Journal of Computational Physics

90, 1990, pp.161-175.

Time

Distance

6 7 8 9 10 11 12 13 14 15 16 17

SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 7 - NUMBER 2 - YEAR 200968 ISSN: 1690-4524

	ZS052DH

