Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Transdisciplinary Communication as a Meta-Framework of Digital Education
Rusudan Makhachashvili, Ivan Semenist
(pages: 1-6)

Multidisciplinary Learning Using Online Networking in Biomedical Engineering
Shigehiro Hashimoto
(pages: 7-12)

Augmented Intelligence for Advancing Healthcare
Mohammad Ilyas
(pages: 13-19)

A Transdisciplinary Approach to Refereeal
Russell Jay Hendel
(pages: 20-25)

The Impact of Convictions on Interlocking Systems
Teresa Henkle Langness
(pages: 26-33)

Collaborative Convergence: Finding the Language for Trans-Disciplinary Communication to Occur
Cristo Leon, James Lipuma
(pages: 34-37)

Bridging the Gap Between the World of Education and the World of Business via Standards to Develop Competences of the Future at Universities
Paweł Poszytek
(pages: 38-42)

Multidisciplinary Learning for Multifaceted Thinking in Globalized Society
Shigehiro Hashimoto
(pages: 43-48)

From Spirituality to Technontology in Education
Florent Pasquier
(pages: 49-52)

Differentiated Learning and Digital Game Based Learning: The KIDEDU Project
Eleni Tsami
(pages: 53-57)

Emerging Role of Artificial Intelligence
Mohammad Ilyas
(pages: 58-65)

Practicing Transdisciplinarity and Trans-Domain Approaches in Education: Theory of and Communication in Values and Knowledge Education (VaKE)
Jean-Luc Patry
(pages: 66-71)

Reflexive Practice for Inter and Trans Disciplinary Research in the Third Millennium
Maria Grazia Albanesi
(pages: 72-76)


 

Abstracts

 


ABSTRACT


Modeling Time Series Signal Patterns by Statistical Distribution of Prediction Errors and its Application to Speaker Identification

Qian-Rong Gu, Tadashi Shibata


A new method that uses statistical distribution of prediction error vectors to build models of time series patterns has been developed. A universal predictor is firstly established from universal training data. Then, properties common to all the patterns are removed from the training data by the predictor. The residuals, i.e., the prediction errors, hold the characteristics of individual patterns. After clustering the prediction errors to a universal codebook, the predictor and the codebook are applied to individual training data sets to obtain the usage histograms of code vectors in the universal codebook, namely, the statistical distribution of prediction error vectors. These histograms represent the properties of individual patterns, and can be used as models in pattern recognition applications. This method is not restricted to any specific signals. As a demonstration, we utilized it to speaker identification application. It performed as well as other modeling methods under the text-dependent condition.

Full Text