Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Education 5.0: Using the Design Thinking Process – An Interdisciplinary View
Birgit Oberer, Alptekin Erkollar
(pages: 1-17)

Impact of Artificial Intelligence on Smart Cities
Mohammad Ilyas
(pages: 18-39)

A Multi-Disciplinary Cybernetic Approach to Pedagogic Excellence
Russell Jay Hendel
(pages: 40-63)

Data Management Sharing Plan: Fostering Effective Trans-Disciplinary Communication in Collaborative Research
Cristo Ernesto Yáñez León, James Lipuma
(pages: 64-79)

From Disunity to Synergy: Transdisciplinarity in HR Trends
Olga Bernikova, Daria Frolova
(pages: 80-92)

The Impact of Artificial Intelligence on the Future Business World
Hebah Y. AlQato
(pages: 93-104)

Wi-Fi and the Wisdom Exchange: The Role of Lived Experience in the Age of AI
Teresa H. Langness
(pages: 105-113)

Older Adult Online Learning during COVID-19 in Taiwan: Based on Teachers' Perspective
Ya-Hui Lee, Yi-Fen Wang, Hsien-Ta Cha
(pages: 114-129)

Data Visualization of Budgeting Assumptions: An Illustrative Case of Trans-disciplinary Applied Knowledge
Carol E. Cuthbert, Noel J. Pears, Karen Bradshaw
(pages: 130-149)

The Importance of Defining Cybersecurity from a Transdisciplinary Approach
Bilquis Ferdousi
(pages: 150-164)

ChatGPT, Metaverses and the Future of Transdisciplinary Communication
Jasmin (Bey) Cowin
(pages: 165-178)

Trans-Disciplinary Communication for Policy Making: A Reflective Activity Study
Cristo Leon
(pages: 179-192)

Trans-Disciplinary Communication in Collaborative Co-Design for Knowledge Sharing
James Lipuma, Cristo Leon
(pages: 193-210)

Digital Games in Education: An Interdisciplinary View
Birgit Oberer, Alptekin Erkollar
(pages: 211-230)

Disciplinary Inbreeding or Disciplinary Integration?
Nagib Callaos
(pages: 231-281)


 

Abstracts

 


ABSTRACT


Development of Safe Taiwan Information System (SATIS) for Typhoon Early Warning in Taiwan

Wen-Ray Su, Pai-Hui Hsu, Shang-Yu Wu, Feng-Tyan Lin, Hsueh-Cheng Chou


Due to the particular geographical location and geological condition, Taiwan is constantly attacked by typhoons, flood, landslides, debris flows, and earthquakes. Those natural hazards had caused huge loss of lives and properties. To reduce the damages and losses caused by the natural hazards, an integrated and complete decision support system for decision makers is necessary. In this study, Safe Taiwan information system (SATIS), which includes two subsystems, response operation subsystem for staff members and decision support subsystem for commanders, is developed for preparedness and response of typhoon hazards. It is based on the Web- GIS framework that the disaster information can be distributed via internet technology. When typhoon is approaching, response operation subsystem is used by National Science and Technology Center for Disaster Reduction (NCDR) staffs to integrate real-time monitoring information, hazard models and graphical user interfaces to analyze and manage the disaster information such as the current position and possible path of typhoon, the spatial distribution of rainfalls, and potential areas of flooding, landslides and debris flows. The input data of this subsystem includes the basic maps, the real-time information of typhoon and rainfall issued by the Central Weather Bureau, the real-time water information from the Water Resources Agency, and the hazard maps indicating areas of potential landslide, debris flow and flooding made by NCDR herself to estimate endangered areas under the current typhoon. There are four main modules integrated into the subsystem including the rainfall monitoring and forecasting, the estimation of potential inundation areas, the estimation of potential landslide and debris flows, and the management of disaster information. The results of hazard risk analysis which include potential rainfall distribution, inundation and landslide risk areas, early warning messages, and total suggestion over the next 24 hours are finally demonstrated by decision support subsystem in the National Emergency Operations Center (NEOC) and help the commander to make the right decisions in disaster preparedness and response phases. In the future, SATIS will integrate social and economic information into the assessment of natural hazard vulnerability. It can help the commander to know the high-risk areas and make the right decision.

Full Text