Journal of
Systemics, Cybernetics and Informatics

ISSN: 1690-4524 (Online)

Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar

Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory

Published by
The International Institute of Informatics and Cybernetics

Re-Published in
(A Community of about 40.000.000 Academics)

Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Nagib C. Callaos

Sponsored by
The International Institute of
Informatics and Systemics

Editorial Advisory Board

Quality Assurance


Journal's Reviewers
Call for Special Articles

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes

Smart Cities: Challenges and Opportunities
Mohammad Ilyas
(pages: 1-6)

Bridging the Gap: Communicating to Increase the Visibility and Impact of Your Academic Work
Erin Ryan
(pages: 7-12)

Cross-Cultural Online Networking Based on Biomedical Engineering to Motivate Transdisciplinary Communication Skills
Shigehiro Hashimoto
(pages: 13-17)

Interdisciplinary Approaches to Learning Informatics
Masaaki Kunigami
(pages: 18-22)

The Impact of Artificial Intelligence and the Importance of Transdisciplinary Research
R. Cherinka, J. Prezzama, P. O'Leary
(pages: 23-28)

Emotional Communication as Complex Phenomenon in Musical Interpretation – Proposal for a Systemic Model That Promotes a Transdisciplinary Process of Self-Formation and Reflection Around Expressiveness as a Lived Experience
Fuensanta Fernández de Velazco, Eduardo Carpinteyro-Lara, Saúl Rodríguez-Luna
(pages: 29-33)

A Multi-Disciplinary Cybernetic Approach to Pedagogic Excellence
Russell Jay Hendel
(pages: 34-41)

The Ethics of Artificial Intelligence in the Era of Generative AI
Vassilka D. Kirova, Cyril S. Ku, Joseph R. Laracy, Thomas J. Marlowe
(pages: 42-50)

Trans-Disciplinary Communication: Context and Semantics
Maurício Vieira Kritz
(pages: 51-57)

A Brave New World: AI as a Nascent Regime?
Jasmin Cowin, Birgit Oberer, Cristo Leon
(pages: 58-66)

The Role of Art and Science – Relational Dynamics in Human Ecology
Giorgio Pizziolo, Rita Micarelli
(pages: 67-75)

Advancing Entrepreneurship Education: An Integrated Approach to Empowering Future Innovators
Birgit Oberer, Alptekin Erkollar
(pages: 76-81)

Harmonizing Horizons: The Symphony of Human-Machine Collaboration in the Age of AI
Birgit Oberer, Alptekin Erkollar
(pages: 82-86)

How Do Students Learn Artificial Intelligence in Interdisciplinary Field of Biomedical Engineering?
Shigehiro Hashimoto
(pages: 87-91)





Strategic Data Pattern Visualisation

Carol E. Cuthbert, Noel J. Pearse

Data visualisation reveals patterns and provides insights that lead to actions from management, thereby playing a mediating role in the relationship between the internal resources of a firm and its financial performance. In this chapter, contingent resource-based theory is applied to the analysis of big data, treating its visualisation as a mode of interdisciplinary communication. In service industries in general and the legal industry in particular, big data analytics (BDA) is emerging as a decision-making tool for management to achieve competitive advantage. Traditionally, data scientists have delved into data armed with a hypothesis, but increasingly they explore data to discern patterns that lead to hypotheses that are then tested. These big data analytics tools in the hands of data scientists have the potential to unlock firm value and increase revenue and profits, through pattern identification, analysis, and strategic action. This exploratory mode of working can increase complexity and thereby diminish efficient management decision-making and action. However, data pattern visualisation reduces complexity, as it enables interdisciplinary communication between data scientists and managers through the translation of statistical patterns into visualisations that enable actionable management decisions. When data scientists visualise data patterns for managers, this translates uncertainty into reliable conclusions, resulting in effective management decision-making and action.

Informed by contingent resource theory and viewing these primary and secondary resources as independent variables and performance outcomes such as revenue and profitability as dependent variables, a conceptual framework is developed. The contingent resource-based theory highlights capabilities emerging from the interrelationship between primary and secondary resources as being central to competitiveness and profitability. Data decision-making systems are viewed as a primary resource, while complementary resources are (1) their completeness of vision (i.e., strategy and innovation) and (2) their ability to execute (i.e., operational capabilities). Data visualisation is therefore crucial as a resource facilitating actionable decisions by management, which in turn enhances firm performance. The balance between expert agents’ self-reliance and central control, the entity’s values, task attributes, and risk appetite all moderate the type of data visualisation produced by data scientists.

Full Text