Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Editorial Introduction – Sustainable, Smart and Systemic Design Post-Anthropocene: Through a Transdisciplinary Lens
Marie Davidová, Susu Nousala, Thomas J. Marlowe
(pages: 1-10)

Systems Changes Learning: Recasting and Reifying Rhythmic Shifts for Doing, Alongside Thinking and Making
David Ing
(pages: 11-73)

Evaluating the Impact of Preconditions for Systemic Human and Non-human Communities
Susu Nousala
(pages: 74-91)

Post-Anthropocene_2.0: Alternative Scenarios through Nature/Computing Coalition Applicable in Architecture
Yannis Zavoleas
(pages: 92-120)

Applying a Systemic Approach for Sustainable Urban Hillside Landscape Design and Planning: The Case Study City of Chongqing in China
Xiao Hu, Magda Sibley, Marie Davidová
(pages: 121-153)

Rethinking Sustainability: Mapping Microclimatic Conditions on Buildings as a Regenerative Design Strategy
Ana Zimbarg
(pages: 154-172)


 

Abstracts

 


ABSTRACT


Toward A Practical General Systems Methodological Theory

Nagib Callaos, Belkis Sánchez de Callaos


Our main purpose in this paper is to describe the way in which we have been relating General System Theory (GST) to practice and to the design of a General Systems Methodology (GSM). Our first step was to apply GST to design a methodology for software development. Then, in a second step, by means of the experience/knowledge learned from applying the methodology to developing specific information systems, a continuous designing and re-designing process started, which simultaneously generalized the methodology and increased its complexity adding new methodical modules for an increasing diversity tasks needed for different specific systems and/or situations. The methodological kernel increased it generality and the sub-methodological modules increased in specificity and details. The methodological intersection of special methodologies increased its generality, because it its commonalities to a higher methodological diversity, and the union set of methodologies included more special methodologies for systems of different nature and for a higher diversity of situations, or environmental conditions. This paved the way for a General Systems Methodology which, because it includes cognitive/thinking methodological perspective it might take us back to the theoretical realm, i.e. to a methodological theory which, in turn, would pave the way to theoretical methodology. In this way Theory and methodologies would interact with each other in cybernetic loops, including negative and positive reciprocal feedback, as well as reciprocal feedforward.

Full Text