Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Transdisciplinary Communication as a Meta-Framework of Digital Education
Rusudan Makhachashvili, Ivan Semenist
(pages: 1-6)

Multidisciplinary Learning Using Online Networking in Biomedical Engineering
Shigehiro Hashimoto
(pages: 7-12)

Augmented Intelligence for Advancing Healthcare
Mohammad Ilyas
(pages: 13-19)

A Transdisciplinary Approach to Refereeal
Russell Jay Hendel
(pages: 20-25)

The Impact of Convictions on Interlocking Systems
Teresa Henkle Langness
(pages: 26-33)

Collaborative Convergence: Finding the Language for Trans-Disciplinary Communication to Occur
Cristo Leon, James Lipuma
(pages: 34-37)

Bridging the Gap Between the World of Education and the World of Business via Standards to Develop Competences of the Future at Universities
Paweł Poszytek
(pages: 38-42)

Multidisciplinary Learning for Multifaceted Thinking in Globalized Society
Shigehiro Hashimoto
(pages: 43-48)

From Spirituality to Technontology in Education
Florent Pasquier
(pages: 49-52)

Differentiated Learning and Digital Game Based Learning: The KIDEDU Project
Eleni Tsami
(pages: 53-57)

Emerging Role of Artificial Intelligence
Mohammad Ilyas
(pages: 58-65)

Practicing Transdisciplinarity and Trans-Domain Approaches in Education: Theory of and Communication in Values and Knowledge Education (VaKE)
Jean-Luc Patry
(pages: 66-71)

Reflexive Practice for Inter and Trans Disciplinary Research in the Third Millennium
Maria Grazia Albanesi
(pages: 72-76)


 

Abstracts

 


ABSTRACT


Adaptive Image Restoration and Segmentation Method Using Different Neighborhood Sizes

Chengcheng Li, William J. B. Oldham


The image restoration methods based on the Bayesian’s framework and Markov random fields (MRF) have been widely used in the image-processing field. The basic idea of all these methods is to use calculus of variation and mathematical statistics to average or estimate a pixel value by the values of its neighbors. After applying this averaging process to the whole image a number of times, the noisy pixels, which are abnormal values, are filtered out. Based on the Tea-trade model, which states that the closer the neighbor, more contribution it makes, almost all of these methods use only the nearest four neighbors for calculation. In our previous research [1, 2], we extended the research on CLRS (image restoration and segmentation by using competitive learning) algorithm to enlarge the neighborhood size. The results showed that the longer neighborhood range could improve or worsen the restoration results. We also found that the autocorrelation coefficient was an important factor to determine the proper neighborhood size. We then further realized that the computational complexity increased dramatically along with the enlargement of the neighborhood size. This paper is to further the previous research and to discuss the tradeoff between the computational complexity and the restoration improvement by using longer neighborhood range. We used a couple of methods to construct the synthetic images with the exact correlation coefficients we want and to determine the corresponding neighborhood size. We constructed an image with a range of correlation coefficients by blending some synthetic images. Then an adaptive method to find the correlation coefficients of this image was constructed. We restored the image by applying different neighborhood CLRS algorithm to different parts of the image according to its correlation coefficient. Finally, we applied this adaptive method to some real-world images to get improved restoration results than by using single neighborhood size. This method can be extended virtually on all the methods based on MRF framework and result in improved algorithms.

Full Text