Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


Analogical and Logical Thinking – In the Context of Inter- or Trans-Disciplinary Communication and Real-Life Problems
Nagib Callaos, Jeremy Horne
(pages: 1-17)

Artificial Intelligence for Drone Swarms
Mohammad Ilyas
(pages: 18-22)

Brains, Minds, and Science: Digging Deeper
Maurício Vieira Kritz
(pages: 23-28)

Can AI Truly Understand Us? (The Challenge of Imitating Human Identity)
Jeremy Horne
(pages: 29-38)

Comparison of Three Methods to Generate Synthetic Datasets for Social Science
Li-jing Arthur Chang
(pages: 39-44)

Digital and Transformational Maturity: Key Factors for Effective Leadership in the Industry 4.0 Era
Pawel Poszytek
(pages: 45-48)

Does AI Represent Authentic Intelligence, or an Artificial Identity?
Jeremy Horne
(pages: 49-68)

Embracing Transdisciplinary Communication: Redefining Digital Education Through Multimodality, Postdigital Humanism and Generative AI
Rusudan Makhachashvili, Ivan Semenist
(pages: 69-76)

Engaged Immersive Learning: An Environment-Driven Framework for Higher Education Integrating Multi-Stakeholder Collaboration, Generative AI, and Practice-Based Assessment
Atsushi Yoshikawa
(pages: 77-94)

Focus On STEM at the Expense of Humanities: A Wrong Turn in Educational Systems
Kleanthis Kyriakidis
(pages: 95-101)

From Disciplinary Silos to Cyber-Transdisciplinary Networks: A Plural Epistemic Model for AGI-Era Knowledge Production
Cristo Leon, James Lipuma
(pages: 102-115)

Generative AI (Artificial Intelligence): What Is It? & What Are Its Inter- And Transdisciplinary Applications?
Richard S. Segall
(pages: 116-125)

How Does the CREL Framework Facilitate Effective Interdisciplinary Collaboration and Experiential Learning Through Role-Playing?
James Lipuma, Cristo Leon
(pages: 126-145)

Narwhals, Unicorns, and Big Tech's Messiah Complex: A Transdisciplinary Allegory for the Age of AI
Jasmin Cowin
(pages: 146-151)

Playing by Feel: Gender, Emotion, and Social Norms in Overwatch Role Choice
Cristo Leon, Angela Arroyo, James Lipuma
(pages: 152-163)

Responsible Integration of AI in Public Legal Education: Regulatory Challenges and Opportunities in Albania
Adrian Leka, Brunilda Haxhiu
(pages: 164-170)

The Civic Mission of Universities: Transdisciplinary Communication in Practice
Genejane Adarlo
(pages: 171-175)

The Promise and Peril of Artificial Intelligence in Higher Education
James Lipuma, Cristo Leon
(pages: 176-182)

They Learned the Course! Why Then Do They Come to Tutorials?
Russell Jay Hendel
(pages: 183-187)

To Use or Not to Use Artificial Intelligence (AI) to Solve Terminology Issues?
Ekaterini Nikolarea
(pages: 188-195)

Transdisciplinary Supersymmetry: Generative AI in the Vector Space of Postdigital Humanism
Rusudan Makhachashvili, Ivan Semenist
(pages: 196-204)

Why Is Trans-Disciplinarity So Difficult?
Ekaterini Nikolarea
(pages: 205-207)


 

Abstracts

 


ABSTRACT


A Model of Inter and Multi Disciplinary Domains, and their Mutual Interactions

Ophir Dan


The Melvil Dewey Decimal Classification system maps the human knowledge domains into a library classification decimal system, which means that the knowledge is discretized. The domains are countable similarly to how Cantor proved the countability of the fractions’ domain.
The debate about the “inter-” and “multi-” disciplinary domains may also be extended into “sub-domains” or from another point of view – into “super-domains”.
However, Science and Technology has rapidly developed after it was classified. If at the beginning, two decimal digits were enough to classify the world's knowledge into a knowledge domain, today we need more digits – about five. This means we are able to display about a million domains of knowledge. The decimal point indicates the sub-division in the zooming-in; the number of such decimal points is unlimited. Thus, the number of hierarchical levels in the knowledge-tree is unlimited. The maximal level is unreachable since it propagates in time.
This intriguing issue raises doubts whether the tree is the most appropriate structure in the current state of the knowledge classification. However, I believe that the knowledge tree is a convenient way of expressing various connections between the knowledge domains. There are other models such as multi-level graph-networks that approximate closer to reality. These models can be further visualized by graph diagrams.
The knowledge diagram is more complicated, considering the interaction between science and industry relative to each domain.
The model of reality might be compared to the object-oriented programming languages approximating reality in order to construct more naturally computer programs that can model the world.
The mutual correspondence of the knowledge domains is dynamic. Some examples of relatively new domains are as follows: biotechnology, bioinformatics, nanotechnology, integro-differential equations, data warehouse, data mining, requirements engineering, micro biology, and bio-chemistry. There is an overlap between the various domains.
The phrase "humans know less about more and more about less" represents the trend of future science and technology. Another interesting phrase is "an image is worth a thousand words." Figures 1 and 2 show the possible relationship between the knowledge domains represented by various geometrical objects and their properties such as color, form, perimeter type, and position.
Research and design are two complementary human activities that, from the dawn of history, have improved Western civilization. New discoveries and research were made possible by former technological innovations. Many areas of research mutually upgrade and improve themselves in a positive feedback loop. However, mathematical proofs represent a different kind of a symbiotic research-design relationship.

Full Text