Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


A Transdisciplinary Approach to Enhancing Online Engineering Education Through Learning Analytics
Masikini Lugoma, Lethuxolo Yende, Pule Dikgwatlhe, Akhona Mkonde, Rorisang Thage, Lucky Maseko, Ngonidzashe Chimwani
(pages: 1-6)

AI Disruptions in Higher Education: Evolutionary Change, Not Revolutionary Overthrow
Cristo Leon, James Lipuma, Maximus Rafla
(pages: 7-18)

Education, Research, and Methodology: A Transdisciplinary Cybernetic Whole
Nagib Callaos, Cristo Leon
(pages: 19-33)

Enhancing Educational Effectiveness Through Transdisciplinary Practice: The ETCOP Model
Birgit Oberer, Alptekin Erkollar, Andreas Kropfberger
(pages: 34-40)

From Instruction to Interaction: Reflexive Learning Design for Cross-Generational Engagement at the Workplace
Gita Aulia Nurani, Ya-Hui Lee
(pages: 41-44)

GIS in Aquatic Animal Health Surveillance: A Transdisciplinary eLearning Initiative Integrating Education, Research, and Methodology (The Aquae Strength Project)
Eleonora Franzago, Rodrigo Macario, Matteo Mazzucato, Federica Sbettega, Manuela Cassani, Guido Ricaldi, Francesco Bissoli, Anna Nadin, Fabrizio Personeni, Manuela Dalla Pozza, Grazia Manca, Nicola Ferré
(pages: 45-50)

Reflexivity as a Compass: The European AI Act and Its Implications for U.S. Higher Education Institutions
Jasmin Cowin
(pages: 51-56)

Required General Education Program Evaluation: Bridging the Gap Between Educators and Administrators
James Lipuma, Cristo Leon, Jeremy Reich
(pages: 57-61)

Researching Ourselves
Jeremy Horne
(pages: 62-72)

The Self-Aware, Reflective Learner: Fostering Metacognitive Awareness and Reflexivity in Undergraduates Through Service-Learning
Genejane Adarlo
(pages: 73-81)


 

Abstracts

 


ABSTRACT


Near-Field Coupling Communication Technology For Human-Area Networking

Ryoji Nagai, Taku Kobase, Tatsuya Kusunoki, Hitoshi Shimasaki, Yuichi Kado, Mitsuru Shinagawa


We propose a human-area networking technology that uses the surface of the human body as a data transmission path and uses near-field coupling TRXs. This technology aims to achieve a „touch and connect” form of communication and a new concept of “touch the world” by using a quasi-electrostatic field signal that propagates along the surface of the human body. This paper explains the principles underlying near-field coupling communication. Special attention has been paid to common-mode noise since our communication system is strongly susceptible to this. We designed and made a common-mode choke coil and a transformer to act as common-mode noise filters to suppress common-mode noise. Moreover, we describe how we evaluated the quality of communication using a phantom model with the same electrical properties as the human body and present the experimental results for the packet error rate (PER) as a function of the signal to noise ratio (SNR) both with the common-mode choke coil or the transformer and without them. Finally, we found that our system achieved a PER of less than 10-2 in general office rooms using raised floors, which corresponded to the quality of communication demanded by communication services in ordinary office spaces.

Full Text