Journal of
Systemics, Cybernetics and Informatics
HOME   |   CURRENT ISSUE   |   PAST ISSUES   |   RELATED PUBLICATIONS   |   SEARCH     CONTACT US
 



ISSN: 1690-4524 (Online)


Peer Reviewed Journal via three different mandatory reviewing processes, since 2006, and, from September 2020, a fourth mandatory peer-editing has been added.

Indexed by
DOAJ (Directory of Open Access Journals)Benefits of supplying DOAJ with metadata:
  • DOAJ's statistics show more than 900 000 page views and 300 000 unique visitors a month to DOAJ from all over the world.
  • Many aggregators, databases, libraries, publishers and search portals collect our free metadata and include it in their products. Examples are Scopus, Serial Solutions and EBSCO.
  • DOAJ is OAI compliant and once an article is in DOAJ, it is automatically harvestable.
  • DOAJ is OpenURL compliant and once an article is in DOAJ, it is automatically linkable.
  • Over 95% of the DOAJ Publisher community said that DOAJ is important for increasing their journal's visibility.
  • DOAJ is often cited as a source of quality, open access journals in research and scholarly publishing circles.
JSCI Supplies DOAJ with Meta Data
, Academic Journals Database, and Google Scholar


Listed in
Cabell Directory of Publishing Opportunities and in Ulrich’s Periodical Directory


Published by
The International Institute of Informatics and Cybernetics


Re-Published in
Academia.edu
(A Community of about 40.000.000 Academics)


Honorary Editorial Advisory Board's Chair
William Lesso (1931-2015)

Editor-in-Chief
Nagib C. Callaos


Sponsored by
The International Institute of
Informatics and Systemics

www.iiis.org
 

Editorial Advisory Board

Quality Assurance

Editors

Journal's Reviewers
Call for Special Articles
 

Description and Aims

Submission of Articles

Areas and Subareas

Information to Contributors

Editorial Peer Review Methodology

Integrating Reviewing Processes


How Does Logical Dynamics Assist Interdisciplinary Education and Research in Addressing Cognitive Challenges?
Mengqin Ning, Jiahong Guo
(pages: 1-6)

Inter-Corrective Meta-Dialogue on Constructive Impact of Trans-disciplinary Communication in Modern Education
Vinod Kumar Verma
(pages: 7-9)

Intergenerational Learning for Older and Younger Employees: What Should Be Done and Should Not?
Gita Aulia Nurani, Ya-Hui Lee
(pages: 10-15)

On the Ontological Notion of Education
Jeremy Horne
(pages: 16-24)

Research-Based Learning in Intergenerational Dialogue and Its Relationship to Education
Sonja Ehret
(pages: 25-29)

Role-Playing in Education: An Experiential Learning Framework for Collaborative Co-design
Cristo Leon, James Lipuma, Sirimuvva Pathikonda, Rafael Arturo Llaca Reyes
(pages: 30-38)

The Emergent Role of Artificial Intelligence as Tool in Conducting Academic Research
Bilquis Ferdousi
(pages: 39-46)

The Impact of Cybernetic Relationships Between Education and Work-Based Learning
Birgit Oberer, Alptekin Erkollar
(pages: 47-51)

The Notions of Education and Research
Nagib Callaos, Jeremy Horne
(pages: 52-62)

Towards Sustainable Legal Education Reform: Interdisciplinary and Transdisciplinary Approaches in Albania's Justice System
Adrian Leka, Brunilda Haxhiu
(pages: 63-67)

Transdisciplinary Research and the Gift Economy
Teresa Henkle Langness
(pages: 68-75)


 

Abstracts

 


ABSTRACT


Graph Sampling Through Graph Decomposition and Reconstruction Based on Kronecker Graphs

Shen Lu, Les Piegl, Richard S. Segall


The connectedness of the social network gives rise to a new challenge of how to efficiently sample the network and keep the graph properties and topology properties as well. Inspired by R-MAT and Kronecker graph generators, based on the observation of different graph topology types, we proposed to use Kronecker graph as the prime graph to conduct Kronecker graph double cover through periphery subgraphs. First of all, the connectedness of the graph remains during graph merging. Secondly, only redundant vertices and edges are merged so that the characteristics of the graphs are kept. Also, graph merging only works on periphery subgraphs from low degrees to higher up so those topology properties are kept. Finally, although some edges are merged, since the similarity groups generated based on Kronecker graph similarity is independent of the degree distribution, Kronecker double cover operation does not affect the graph degree centrality measure. We theoretically prove the feasibility of the Kronecker double-cover operation and also compare the quality of the sample set with Snowball sampling and Es-i sampling sets. Experimental results show us that, when the separation of the core and periphery subgraphs is between mean (the average of the degrees) and mean+std (standard deviation of the degrees), the topology types and graph properties can be preserved. This conclusion confirms the existence of the topology types, and also proves the topology types of the real-world graphs are not random.

Full Text